95 research outputs found
Weed seed dormancy as a survival mechanism: brief review
Um dos principais mecanismos de sobrevivência das plantas daninhas em ambientes constantemente perturbados é a alta produção de sementes. Essas possuem geralmente algum mecanismo de dormência, o qual contribui para a perpetuação de espécies interferentes nos cultivos agrÃcolas. A dormência pode ser caracterizada pela ausência temporária da germinação, mesmo quando em condições adequadas de sua ocorrência. Isso permite que inúmeras espécies vegetais sobrevivam à s adversidades, sobretudo aquelas que dificultam ou impeçam o seu crescimento vegetativo e reprodutivo. As causas da dormência são provenientes de dois mecanismos básicos, sendo o primeiro relacionado a eventos internos das sementes (embrião) e o segundo, à s caracterÃsticas externas (tegumento, endosperma ou as barreiras impostas pelo fruto). Conceitualmente, a dormência pode ser distinguida em dois tipos: dormência primária (quando os mecanismos de dormência ocorrem ainda na planta-mãe) e secundária (quando os mecanismos de estabelecimento da dormência ocorrem após a dispersão das sementes). A ocorrência desses dois tipos de dormência é comum em plantas daninhas. A sua alternância ou ciclagem garante o fluxo de germinação destas espécies, o qual depende das caracterÃsticas iniciais durante a formação das sementes (dormência primária) e, posteriormente, das condições ambientais (dormência secundária). Todavia, muitos são os mecanismos que coordenam a dormência, sendo a distinção destes ainda controversos. Nesse sentido, este estudo tem por objetivo abordar alguns dos principais conceitos e mecanismos de dormência em plantas daninhas, com intuito de contribuir e estimular as pesquisas, ainda escassas, nessa área.The high production of seeds in constantly disturbed environments is one of the main mechanisms of weeds survival. These seeds have usually some dormancy mechanism which constitutes weed species perpetuation in the crops. Seed dormancy can be characterized by temporally absence of the germination capacity, even though the seeds have satisfactorily conditions to germinate, thus allowing species survival under adversities, mainly those that make it difficult or hinder vegetative and reproductive growth. The causes of dormancy stem from two basic mechanisms: the first is related to inner seed events (embryo) and the second to outer characteristics in the seeds (tegument, endosperm or fruit barriers). Conceptually, dormancy can be classified as primary dormancy (when the mechanisms occur in plants-mother) and secondary dormancy (when the mechanisms causing dormancy occur after seed dispersion). These types of dormancy occur normally in weeds. Their alternation or cycling ensures germination flow these species, which depends on the characteristics occurring at the initial stages of seed formation (primary dormancy), and later, on the environmental conditions (secondary dormancy). However, many mechanisms coordinate dormancy, with the differences among them being still controversial. Thus, this study aimed to approach some of the main concepts and mechanisms in weed dormancy, in order to contribute and stimulate research which is still scarce in this area
Cysteine mutations in the ebolavirus matrix protein VP40 promote phosphatidylserine binding by increasing the flexibility of a lipid-binding loop
Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS
VOC 202012/01 Variant Is Effectively Neutralized by Antibodies Produced by Patients Infected before Its Diffusion in Italy
The coronavirus disease 2019 (Covid-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and presents a global health emergency that needs urgent intervention. Viruses constantly change through mutation, and new variants of a virus are expected to occur over time. In the United Kingdom (UK), a new variant called B.1.1.7 has emerged with an unusually large number of mutations. The aim of this study is to evaluate the level of protection of sera from 12 patients infected and later healed in Apulia Region (Italy) with Covid-19 between March and November 2020, when the English variant was not circulating in this territory yet, against the new VOC 202012/01 variant by seroneutralization assay. The sera of patients had already been tested before, using a virus belonging to the lineage B.1 and showed an antibody neutralizing titer ranging between 1:160 and 1:320. All the 12 sera donors confirmed the same titers of neutralizing antibodies obtained with a strain belonging to the lineage B.1.1.7 (VOC 202012/01). These data indicate that antibodies produced in subjects infected with variants of Sars-CoV-2 strain before the appearance of the English one, seem to have a neutralizing power also against this variant
Fusogenic coiled-coil peptides enhance lipid nanoparticle-mediated mRNA delivery upon intramyocardial administration
Supramolecular & Biomaterials Chemistr
Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics
Klebsiella pneumoniae is at the forefront of antimicrobial resistance for Gram-negative pathogenic bacteria, as strains resistant to third-generation cephalosporins and carbapenems are widely reported. The worldwide diffusion of these strains is of great concern due to the high morbidity and mortality often associated with K. pneumoniae infections in nosocomial environments. We sequenced the genomes of 89 K. pneumoniae strains isolated in six Italian hospitals. Strains were selected based on antibiotypes, regardless of multilocus sequence type, to obtain a picture of the epidemiology of K. pneumoniae in Italy. Thirty-one strains were carbapenem-resistant K. pneumoniae carbapenemase producers, 29 were resistant to third-generation cephalosporins, and 29 were susceptible to the aforementioned antibiotics. The genomes were compared to all of the sequences available in the databases, obtaining a data set of 319 genomes spanning the known diversity of K. pneumoniae worldwide. Bioinformatic analyses of this global data set allowed us to construct a whole-species phylogeny, to detect patterns of antibiotic resistance distribution, and to date the differentiation between specific clades of interest. Finally, we detected an 3c1.3-Mb recombination that characterizes all of the isolates of clonal complex 258, the most widespread carbapenem-resistant group of K. pneumoniae. The evolution of this complex was modeled, dating the newly detected and the previously reported recombination events. The present study contributes to the understanding of K. pneumoniae evolution, providing novel insights into its global genomic characteristics and drawing a dated epidemiological scenario for this pathogen in Italy
Fusogenic Coiled-Coil Peptides Enhance Lipid Nanoparticle-Mediated mRNA Delivery upon Intramyocardial Administration
Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure
Fusogenic Coiled-Coil Peptides Enhance Lipid Nanoparticle-Mediated mRNA Delivery upon Intramyocardial Administration
Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure
Cardiac delivery of modified mRNA using lipid nanoparticles: Cellular targets and biodistribution after intramyocardial administration
Despite research efforts being made towards preserving (or even regenerating) heart tissue after an ischemic event, there is a lack of resources in current clinical treatment modalities for patients with acute myocardial infarction that specifically address cardiac tissue impairment. Modified messenger RNA (modRNA) presents compelling properties that could allow new therapeutic strategies to tackle the underlying molecular pathways that ultimately lead to development of chronic heart failure. However, clinical application of modRNA for the heart is challenged by the lack of effective and safe delivery systems. Lipid nanoparticles (LNPs) represent a well characterized class of RNA delivery systems, which were recently approved for clinical usage in mRNA-based COVID-19 vaccines. In this study, we evaluated the potential of LNPs for cardiac delivery of modRNA. We tested how variations in C12-200 modRNA-LNP composition affect transfection levels and biodistribution after intramyocardial administration in both healthy and myocardial-infarcted mice, and determined the targeted cardiac cell types. Our data revealed that LNP-mediated modRNA delivery outperforms the current state of the art (modRNA in citrate buffer) upon intramyocardial administration in mice, with only minor differences among the formulations tested. Furthermore, we determined both in vitro and in vivo that the cardiac cells targeted by modRNA-LNPs include fibroblasts, endothelial cells and epicardial cells, suggesting that these cell types could represent targets for therapeutic interference with these LNP formulations. These outcomes may serve as a starting point for LNP development specifically for therapeutic mRNA cardiac delivery applications
- …