263 research outputs found
Time resolved magneto-optical spectroscopy on InGaAs nanostructures grown on (311)A and (100)-oriented substrates
We present a time-resolved magneto-photoluminescence study of In0.5Ga0.5As self-organized nanostructures grown on (100) and (311)A-oriented substrates by molecular beam epitaxy. The (311)A-oriented samples have a corrugated surface realizing a sort of quantum wire array, whereas the (100) samples exhibit Stranski–Krastanow islands. The different morphology of the nanostructures is reflected in the different electron/hole wave-function confinement along the three directions (perpendicular and parallel to the growth direction). We discuss the effects of the magnetic field (up to 8 T) on the recombination mechanism in these InGaAs nanostructures and on the transient dynamics of photoluminescence. We observe a clear decrease of the photoluminescence decay time with magnetic field flux indicating the exciton nature of the radiative low-temperature recombination processes
Temperature dependence of the photoluminescence properties of colloidal Cd Se ∕ Zn S core/shell quantum dots embedded in a polystyrene matrix
We report on the temperature dependence of the photoluminescence (PL) spectrum and of the PL relaxation dynamics for colloidal core/shell quantum dots (QDs) embedded in an inert polystyrene matrix. We demonstrate that the confinement energy in the QDs is independent of the temperature. The coupling with both acoustic and optical phonons is also studied. Quantum confinement results in a strong increase of the exciton\char21{}acoustic-phonon coupling constant, up to 71\phantom{\rule{0.3em}{0ex}}\ensuremath{\mu}\mathrm{eV}∕\mathrm{K}, and in a reduced exciton\char21{}longitudinal-optical (LO)-phonon coupling constant, down to , with respect to bulk CdSe. In addition, we demonstrate that the main nonradiative process that limits the quantum efficiency of the QD at room temperature is the thermal escape from the dot assisted by scattering with four LO phonons. Thermally activated trapping in surface states is also observed at low temperature, with an activation energy of about
Ground state of excitons and charged excitons in a quantum well
A variational calculation of the ground state of a neutral exciton and of
positively and negatively charged excitons (trions) in single quantum well is
presented. We study the dependance of the correlation energy and of the binding
energy on the well width and on the hole mass. Our results are are compared
with previous theoretical results and with avalaible experimental data.Comment: 8 pages, 5 figures presented to OECS
Light Emission Properties of Thermally Evaporated CH3 NH3 PbBr3 Perovskite from Nano-to Macro-Scale: Role of Free and Localized Excitons
Over the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano-to micro-and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CH3 NH3 PbBr3 perovskite after wet air UV light trap passivation. The map of light emission from grains, carried out by SNOM at the nanoscale and by micro-PL techniques, clearly indicates that free and localized excitons (EXs) are the dominant light-emitting species, the localized excitons being the dominant ones in the presence of crystallites. These species also have a key role in the amplified spontaneous emission (ASE) process: for higher excitation densities, the relative contribution of localized EXs basically remains constant, while a clear competition between ASE and free EXs spontaneous emission is present, which suggests that ASE is due to stimulated emission from the free EXs
Dominance of charged excitons in single quantum dot photoluminescence spectra
Single InxGa1-xAs/GaAs quantum dot photoluminescence spectra, obtained by low-temperature near-field scanning optical microscopy, are compared with theoretically derived optical spectra. The spectra show shell filling as well as few-particle fine structure associated with neutral and charged multiexcitons, in good agreement with the many-body calculations. There appears to be a greater tendency to charged-exciton formation, which is discussed in terms of the high diffusivity of photogenerated electrons
Photoluminescence efficiency of Substituted Quaterthiophene Crystals
none8The photoluminescence (PL) efficiency of substituted α-conjugated quaterthiophene crystals shows marked differences depending on crystal packing and molecular geometry. This effect is studied by evaluating the role of the intermolecular interactions and the effects of the single molecule conformation on the intersystem crossing (ISC) rate. The comparison of these calculations with absolute quantum efficiency measurements and with the experimental temperature dependence of the PL decay time, indicates that the differences in PL efficiency are not inherent to crystal packing effects but they are determined by the ISC rate.G.GIGLI; F.DELLA SALA; M.LOMASCOLO; M.ANNI; G.BARBARELLA; A.DI CARLO; P.LUGLI; R. CINGOLANIGigli, Giuseppe; F., DELLA SALA; M., Lomascolo; Anni, Marco; G., Barbarella; A., DI CARLO; P., Lugli; Cingolani, Robert
Well-width dependence of the ground level emission of GaN/AlGaN quantum wells
We have performed a systematic investigation of GaN/AlGaN quantum wells grown on different buffer layers (either GaN or AlGaN) in order to clarify the role of strain, structural parameters, and built-in field in determining the well-width dependence of the ground level emission energy. We find that identical quantum wells grown on different buffer layers exhibit strong variation of the ground level energy but similar well-width dependence. The data are quantitatively explained by an analytic model based on the envelope function formalism which accounts for screening and built-in field, and by a full self-consistent tight binding model
Second Harmonic Generation for a Dilute Suspension of Coated Particles
We derive an expression for the effective second-harmonic coefficient of a
dilute suspension of coated spherical particles. It is assumed that the coating
material, but not the core or the host, has a nonlinear susceptibility for
second-harmonic generation (SHG). The resulting compact expression shows the
various factors affecting the effective SHG coefficient. The effective SHG per
unit volume of nonlinear coating material is found to be greatly enhanced at
certain frequencies, corresponding to the surface plasmon resonance of the
coated particles. Similar expression is also derived for a dilute suspension of
coated discs. For coating materials with third-harmonic (THG) coefficient,
results for the effective THG coefficients are given for the cases of coated
particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.
Nanoscale compositional fluctuations in multiple InGaAs/GaAs quantum wires
An accurate analysis of nanoscale compositional fluctuations in InGaAs/GaAs quantum wires grown by metalorganic chemical vapor deposition on V-grooved substrates was performed by means of high-spatial-resolution transmission electron microscopy techniques. Small In fluctuations (2%-3% excess indium), spatially localized over approximately 5 nm, were detected and related to changes in the photoluminescence and photoluminescence excitation spectra
Instrucció 17/2020 del gerent de la UAB per la qual es fixen el criteris d'aplicació de les mesures recollides a la Resolució SLT/2875/2020, de 12 de novembre, per la qual es prorroguen i es modifiquen les mesures en matèria de salut pública per a la contenció del brot epidèmic de la pandèmia de COVID-19 al territori de Catalunya
Per tal de facilitar el compliment del contingut de la Resolució SLT/2875/2020, de 12 de novembre i per raons de seguretat jurídica i, per tal també de garantir el funcionament dels serveis als campus UAB, resulta necessari determinar els criteris l'aplicació i l'abast de les mesures establertes, en la referida resolució
- …