3,986 research outputs found
Dirac equation in spacetimes with torsion and non-metricity
Dirac equation is written in a non-Riemannian spacetime with torsion and
non-metricity by lifting the connection from the tangent bundle to the spinor
bundle over spacetime. Foldy-Wouthuysen transformation of the Dirac equation in
a Schwarzschild background spacetime is considered and it is shown that both
the torsion and non-metricity couples to the momentum and spin of a massive,
spinning particle. However, the effects are small to be observationally
significant.Comment: 12 pages LATEX file, no figures, to appear in Int. J. Mod. Phys.
Existence of Fermion Zero Modes and Deconfinement of Spinons in Quantum Antiferromagnetism resulting from Algebraic Spin Liquid
We investigate the quantum antiferromagnetism arising from algebraic spin
liquid via spontaneous chiral symmetry breaking. We claim that in the
antiferromagnet massive Dirac spinons can appear to make broad continuum
spectrum at high energies in inelastic neutron scattering. The mechanism of
spinon deconfinement results from the existence of fermion zero modes in single
monopole potentials. Neel vectors can make a skyrmion configuration around a
magnetic monopole of compact U(1) gauge fields. Remarkably, in the
monopole-skyrmion composite potential the Dirac fermion is shown to have a zero
mode. The emergence of the fermion zero mode forbids the condensation of
monopoles, resulting in deconfinement of Dirac spinons in the quantum
antiferromagnet.Comment: K. -S. Kim is much indebted to Dr. A. Tanaka who pointed out a
mistake in association with the gradient expansion in Eq. (C3) and Eq. (C4
Cosmological model with non-minimally coupled fermionic field
A model for the Universe is proposed whose constituents are: (a) a dark
energy field modeled by a fermionic field non-minimally coupled with the
gravitational field, (b) a matter field which consists of pressureless baryonic
and dark matter fields and (c) a field which represents the radiation and the
neutrinos. The coupled system of Dirac's equations and Einstein field equations
is solved numerically by considering a spatially flat homogeneous and isotropic
Universe. It is shown that the proposed model can reproduce the expected
red-shift behaviors of the deceleration parameter, of the density parameters of
each constituent and of the luminosity distance. Furthermore, for small values
of the red-shift the constant which couples the fermionic and gravitational
fields has a remarkable influence on the density and deceleration parameters.Comment: Accepted for publication in Europhysics Letter
Quantum gravitational optics: the induced phase
The geometrical approximation of the extended Maxwell equation in curved
spacetime incorporating interactions induced by the vacuum polarization effects
is considered. Taking into account these QED interactions and employing the
analogy between eikonal equation in geometrical optics and Hamilton-Jacobi
equation for the particle motion, we study the phase structure of the modified
theory. There is a complicated, local induced phase which is believed to be
responsible for the modification of the classical picture of light ray. The
main features of QGO could be obtained through the study of this induced phase.
We discuss initial principles in conventional and modified geometrical optics
and compare the results.Comment: 10 pages, REVTex forma
Spectropolarimetry of the Type IIb Supernova 2001ig
We present spectropolarimetric observations of the Type IIb SN 2001ig in NGC
7424; conducted with the ESO VLT FORS1 on 2001 Dec 16, 2002 Jan 3 and 2002 Aug
16 or 13, 31 and 256 days post-explosion. These observations are at three
different stages of the SN evolution: (1) The hydrogen-rich photospheric phase,
(2) the Type II to Type Ib transitional phase and (3) the nebular phase. At
each of these stages, the observations show remarkably different polarization
properties as a function of wavelength. We show that the degree of interstellar
polarization is 0.17%. The low intrinsic polarization (~0.2%) at the first
epoch is consistent with an almost spherical (<10% deviation from spherical
symmetry) hydrogen dominated ejecta. Similar to SN 1987A and to Type IIP SNe, a
sharp increase in the degree of the polarization (~1%) is observed when the
outer hydrogen layer becomes optically thin by day 31; only at this epoch is
the polarization well described by a ``dominant axis.'' The polarization angle
of the data shows a rotation through ~40 degrees between the first and second
epochs, indicating that the asymmetries of the first epoch were not directly
coupled with those observed at the second epoch. For the most polarized lines,
we observe wavelength-dependent loop structures in addition to the dominant
axis on the Q-U plane. We show that the polarization properties of Type IIb SNe
are roughly similar to one another, but with significant differences arising
due to line blending effects especially with the high velocities observed for
SN 2001ig. This suggests that the geometry of SN 2001ig is related to SN 1993J
and that these events may have arisen from a similar binary progenitor system.Comment: 42 pages, 12 figures (figs. 11 and 12 are both composed of four
subpanels, figs. 6,7,8,11 and 12 are in color, fig. 1 is low res and a high
res version is available at http://www.as.utexas.edu/~jrm/), ApJ Accepte
Casimir force in the presence of a magnetodielectric medium
In this article we investigate the Casimir effect in the presence of a medium
by quantizing the Electromagnetic (EM) field in the presence of a
magnetodielectric medium by using the path integral formalism. For a given
medium with definite electric and magnetic susceptibilities, explicit
expressions for the Casimir force are obtained which are in agree with the
original Casimir force between two conducting parallel plates immersed in the
quantum electromagnetic vacuum.Comment: 8 pages, 1 figur
Treating some solid state problems with the Dirac equation
The ambiguity involved in the definition of effective-mass Hamiltonians for
nonrelativistic models is resolved using the Dirac equation. The multistep
approximation is extended for relativistic cases allowing the treatment of
arbitrary potential and effective-mass profiles without ordering problems. On
the other hand, if the Schrodinger equation is supposed to be used, our
relativistic approach demonstrate that both results are coincidents if the
BenDaniel and Duke prescription for the kinetic-energy operator is implemented.
Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure
A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization
The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a
function of the renormalization parameter. The constraints are obtained and
they are used to carry out canonical quantization of the model by means of
Dirac brackets. By introducing an additional scalar field, it is shown that the
model can be made gauge invariant. The gauge invariant model is quantized by
establishing a pair of gauge fixing constraints in order that the method of
Dirac can be used.Comment: 18 page
- …