4,387 research outputs found
The \chi Factor: Determining the Strength of Activity in Low Mass Dwarfs
We describe a new, distance-independent method for calculating the magnetic
activity strength in low mass dwarfs, L_{H\alpha}/L_{bol}. Using a
well-observed sample of nearby stars and cool standards spanning spectral type
M0.5 to L0, we compute ``\chi'', the ratio between the continuum flux near
H-alpha and the bolometric flux, f_{\lambda6560}/f_{bol}. This ratio may be
multiplied by the measured equivalent width of the H-alpha emission line to
yield L_{H\alpha}/L_{bol}. We provide \chi values for all objects in our
sample, as well as fits to \chi as a function of color and average values by
spectral type. This method was used by West et al.(2004) to examine trends in
magnetic activity strength in low mass stars.Comment: 11 pages, 5 figures. Accepted for publication in PAS
Standardizing Communications and Networks in the ICU
journal articleBiomedical Informatic
Real Time Data Acquisition: Recommendations for the Medical Information Bus (MIB)
journal articleBiomedical Informatic
The Radio Spectrum of TVLM513-46546: Constraints on the Coronal Properties of a Late M Dwarf
We explore the radio emission from the M9 dwarf, TVLM513-46546, at multiple
radio frequencies, determining the flux spectrum of persistent radio emission,
as well as constraining the levels of circular polarization. Detections at both
3.6 and 6 cm provide spectral index measurement (where S) of . A detection at 20 cm suggests that the
spectral peak is between 1.4 and 5 GHz. The most stringent upper limits on
circular polarization are at 3.6 and 6 cm, with 15%. These
characteristics agree well with those of typical parameters for early to mid M
dwarfs, confirming that magnetic activity is present at levels comparable with
those extrapolated from earlier M dwarfs. We apply analytic models to
investigate the coronal properties under simple assumptions of dipole magnetic
field geometry and radially varying nonthermal electron density distributions.
Requiring the spectrum to be optically thin at frequencies higher than 5 GHz
and reproducing the observed 3.6 cm fluxes constrains the magnetic field at the
base to be less than about 500 G. There is no statistically significant
periodicity in the 3.6 cm light curve, but it is consistent with low-level
variability.Comment: 11 pages, 2 figures Accepted for publication in the Astrophysical
Journa
What's the point of knowing how?
Why is it useful to talk and think about knowledge-how? Using Edward Craig’s discussion of the function of the concepts of knowledge and knowledge-how as a jumping off point, this paper argues that considering this question can offer us new angles on the debate about knowledge-how. We consider two candidate functions for the concept of knowledge-how: pooling capacities, and mutual reliance. Craig makes the case for pooling capacities, which connects knowledge-how to our need to pool practical capacities. I argue that the evidence is much more equivocal. My suggested diagnosis is that the concept of knowledge-how plays both functions, meaning that the concept of knowledge-how is inconsistent, and that the debate about knowledge-how is at least partly a metalinguistic negotiation. In closing, I suggest a way to revise the philosophical concept of knowledge how
- …