38 research outputs found
An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy
Scalar and vector bosons in the background of one-dimensional nonminimal
vector linear plus inversely linear potentials are explored in a unified way in
the context of the Duffin-Kemmer-Petiau theory. The problem is mapped into a
Sturm-Liouville problem with an effective singular oscillator. With boundary
conditions emerging from the problem, exact bound-state solutions in the spin-0
sector are found in closed form and it is shown that the spectrum exhibits
degeneracy. It is shown that, depending on the potential parameters, there may
or may not exist bound-state solutions in the spin-1 sector.Comment: 1 figure. arXiv admin note: substantial text overlap with
arXiv:1009.159
Variational analysis for a generalized spiked harmonic oscillator
A variational analysis is presented for the generalized spiked harmonic
oscillator Hamiltonian operator H, where H = -(d/dx)^2 + Bx^2+ A/x^2 +
lambda/x^alpha, and alpha and lambda are real positive parameters. The
formalism makes use of a basis provided by exact solutions of Schroedinger's
equation for the Gol'dman and Krivchenkov Hamiltonian (alpha = 2), and the
corresponding matrix elements that were previously found. For all the discrete
eigenvalues the method provides bounds which improve as the dimension of the
basis set is increased. Extension to the N-dimensional case in arbitrary
angular-momentum subspaces is also presented. By minimizing over the free
parameter A, we are able to reduce substantially the number of basis functions
needed for a given accuracy.Comment: 15 pages, 1 figur
Perurbation expansions for the spiked harmonic oscillator and related series involving the gamma function
We study weak-coupling perturbation expansions for the ground-state energy of
the Hamiltonian with the generalized spiked harmonic oscillator potential V(x)
= Bx^2 + A/x^2 + lambda/x^alpha, and also for the bottoms of the angular
momentum subspaces labelled by ell = 0,1,2 ..., in N-dimensions corresponding
to the spiked harmonic oscillator potential: V(x) = x^2 + lambda/x^alpha, where
alpha is a real positive parameter. A method of Znojil is then applied to
obtain closed form expressions for the sums of some infinite series whose terms
involve ratios and products of gamma functions.Comment: 9 page
The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity
We describe a six-parameter family of the minimum-uncertainty squeezed states
for the harmonic oscillator in nonrelativistic quantum mechanics. They are
derived by the action of corresponding maximal kinematical invariance group on
the standard ground state solution. We show that the product of the variances
attains the required minimum value 1/4 only at the instances that one variance
is a minimum and the other is a maximum, when the squeezing of one of the
variances occurs. The generalized coherent states are explicitly constructed
and their Wigner function is studied. The overlap coefficients between the
squeezed, or generalized harmonic, and the Fock states are explicitly evaluated
in terms of hypergeometric functions. The corresponding photons statistics are
discussed and some applications to quantum optics, cavity quantum
electrodynamics, and superfocusing in channeling scattering are mentioned.
Explicit solutions of the Heisenberg equations for radiation field operators
with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys.,
Special Issue celebrating the 20th anniversary of quantum state engineering
(R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201