2,841 research outputs found
Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts
We consider the effects of inhomogeneous reionization on the distribution of
galaxies at high redshifts. Modulation of the formation process of the ionizing
sources by large scale density modes makes reionization inhomogeneous and
introduces a spread to the reionization times of different regions with the
same size. After sources photo-ionize and heat these regions to a temperature
\ga 10^4K at different times, their temperatures evolve as the ionized
intergalactic medium (IGM) expands. The varying IGM temperature makes the
minimum mass of galaxies spatially non-uniform with a fluctuation amplitude
that increases towards small scales. These scale-dependent fluctuations modify
the shape of the power spectrum of low-mass galaxies at high redshifts in a way
that depends on the history of reionization. The resulting distortion of the
primordial power spectrum is significantly larger than changes associated with
uncertainties in the inflationary parameters, such as the spectral index of the
scalar power spectrum or the running of the spectral index. Future surveys of
high-redshift galaxies will offer a new probe of the thermal history of the IGM
but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap
Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines
We discuss a method for detecting the emission from high redshift galaxies by
cross correlating flux fluctuations from multiple spectral lines. If one can
fit and subtract away the continuum emission with a smooth function of
frequency, the remaining signal contains fluctuations of flux with frequency
and angle from line emitting galaxies. Over a particular small range of
observed frequencies, these fluctuations will originate from sources
corresponding to a series of different redshifts, one for each emission line.
It is possible to statistically isolate the fluctuations at a particular
redshift by cross correlating emission originating from the same redshift, but
in different emission lines. This technique will allow detection of clustering
fluctuations from the faintest galaxies which individually cannot be detected,
but which contribute substantially to the total signal due to their large
numbers. We describe these fluctuations quantitatively through the line cross
power spectrum. As an example of a particular application of this technique, we
calculate the signal-to-noise ratio for a measurement of the cross power
spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the
proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that
the cross power spectrum can be measured beyond a redshift of z=8. Such
observations could constrain the evolution of the metallicity, bias, and duty
cycle of faint galaxies at high redshifts and may also be sensitive to the
reionization history through its effect on the minimum mass of galaxies. As
another example, we consider the cross power spectrum of CO line emission
measured with a large ground based telescope like CCAT and 21-cm radiation
originating from hydrogen in galaxies after reionization with an interferometer
similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an
example of cross correlating CO line emission and 21cm line emission from
galaxies after reionizatio
Spectroscopic Constraints on the Surface Magnetic Field of the Accreting Neutron Star EXO 0748-676
Gravitationally redshifted absorption lines of Fe XXVI, Fe XXV, and O VIII
were inferred recently in the X-ray spectrum of the bursting neutron star EXO
0748-676. We place an upper limit on the stellar magnetic field based on the
iron lines. The oxygen absorption feature shows a multiple component profile
that is consistent with Zeeman splitting in a magnetic field of ~(1-2)x10^9
gauss, and for which the corresponding Zeeman components of the iron lines are
expected to be blended together. In other systems, a field strength >5x10^{10}
gauss could induce a blueshift of the line centroids that would counteract
gravitational redshift and complicate the derivation of constraints on the
equation of state of the neutron star.Comment: 5 pages, submitted to Phys. Rev. Let
The Expected Rate of Gamma-Ray Burst Afterglows In Supernova Searches
We predict the rate at which Gamma-Ray Burst (GRB) afterglows should be
detected in supernova searches as a function of limiting flux. Although GRB
afterglows are rarer than supernovae, they are detectable at greater distances
because of their higher intrinsic luminosity. Assuming that GRBs trace the
cosmic star formation history and that every GRB gives rise to a bright
afterglow, we find that the average detection rate of supernovae and afterglows
should be comparable at limiting magnitudes brighter than K=18. The actual rate
of afterglows is expected to be somewhat lower since only a fraction of all
gamma-ray selected GRBs were observed to have associated afterglows. However,
the rate could also be higher if the initial gamma-ray emission from GRB
sources is more beamed than their late afterglow emission. Hence, current and
future supernova searches can place strong constraints on the afterglow
appearance fraction and the initial beaming angle of GRB sources.Comment: 13 pages, submitted to ApJ
Giant slip lengths of a simple fluid at vibrating solid interfaces
It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane
configuration a mechanical resonator vibrating close to a rigid wall in a
simple fluid can be overdamped to a frozen regime. Here, by solving
analytically the Navier Stokes equations with partial slip boundary conditions
at the solid fluid interface, we develop a theoretical approach justifying and
extending these earlier findings. We show in particular that in the perfect
slip regime the above mentioned results are, in the plane-plane configuration,
very general and robust with respect to lever geometry considerations. We
compare the results with those obtained previously for the sphere moving
perpendicularly and close to a plane in a simple fluid and discuss in more
details the differences concerning the dependence of the friction forces with
the gap distance separating the moving object (i.e., plane or sphere) from the
fixed plane. Finally, we show that the submicron fluidic effect reported in the
reference above, and discussed further in the present work, can have dramatic
implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
Is a Classical Language Adequate in Assessing the Detectability of the Redshifted 21cm Signal from the Early Universe?
The classical radiometer equation is commonly used to calculate the
detectability of the 21cm emission by diffuse cosmic hydrogen at high
redshifts. However, the classical description is only valid in the regime where
the occupation number of the photons in phase space is much larger than unity
and they collectively behave as a classical electromagnetic field. At redshifts
z<20, the spin temperature of the intergalactic gas is dictated by the
radiation from galaxies and the brightness temperature of the emitting gas is
in the range of mK, independently from the existence of the cosmic microwave
background. In regions where the observed brightness temperature of the 21cm
signal is smaller than the observed photon energy, of 68/(1+z) mK, the
occupation number of the signal photons is smaller than unity. Neverethless,
the radiometer equation can still be used in this regime because the weak
signal is accompanied by a flood of foreground photons with a high occupation
number (involving the synchrotron Galactic emission and the cosmic microwave
background). As the signal photons are not individually distinguishable, the
combined signal+foreground population of photons has a high occupation number,
thus justifying the use of the radiometer equation.Comment: 4 pages, Accepted for publication in JCA
Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization
A large number of faint galaxies, born less than a billion years after the
big bang, have recently been discovered. The fluctuations in the distribution
of these galaxies contributed to a scatter in the ionization fraction of cosmic
hydrogen on scales of tens of Mpc, as observed along the lines of sight to the
earliest known quasars. Theoretical simulations predict that the formation of
dwarf galaxies should have been suppressed after cosmic hydrogen was reionized,
leading to a drop in the cosmic star formation rate. Here we present evidence
for this suppression. We show that the post-reionization galaxies which
produced most of the ionizing radiation at a redshift z~5.5, must have had a
mass in excess of ~10^{10.6+/-0.4} solar masses or else the aforementioned
scatter would have been smaller than observed. This limiting mass is two orders
of magnitude larger than the galaxy mass that is thought to have dominated the
reionization of cosmic hydrogen (~10^8 solar masses). We predict that future
surveys with space-based infrared telescopes will detect a population of
smaller galaxies that reionized the Universe at an earlier time, prior to the
epoch of dwarf galaxy suppression.Comment: 19 pages, 3 figures. Accepted for publication in Nature; press
embargo until publishe
Deviations from the local field approximation in negative streamer heads
Negative streamer ionization fronts in nitrogen under normal conditions are
investigated both in a particle model and in a fluid model in local field
approximation. The parameter functions for the fluid model are derived from
swarm experiments in the particle model. The front structure on the inner scale
is investigated in a 1D setting, allowing reasonable run-time and memory
consumption and high numerical accuracy without introducing super-particles. If
the reduced electric field immediately before the front is >= 50kV/(cm bar),
solutions of fluid and particle model agree very well. If the field increases
up to 200kV/(cm bar), the solutions of particle and fluid model deviate, in
particular, the ionization level behind the front becomes up to 60% higher in
the particle model while the velocity is rather insensitive. Particle and fluid
model deviate because electrons with high energies do not yet fully run away
from the front, but are somewhat ahead. This leads to increasing ionization
rates in the particle model at the very tip of the front. The energy overshoot
of electrons in the leading edge of the front actually agrees quantitatively
with the energy overshoot in the leading edge of an electron swarm or avalanche
in the same electric field.Comment: The paper has 17 pages, including 15 figures and 3 table
Injection of photoelectrons into dense argon gas
The injection of photoelectrons in a gaseous or liquid sample is a widespread
technique to produce a cold plasma in a weakly--ionized system in order to
study the transport properties of electrons in a dense gas or liquid. We report
here the experimental results of photoelectron injection into dense argon gas
at the temperatureT=142.6 K as a function of the externally applied electric
field and gas density. We show that the experimental data can be interpreted in
terms of the so called Young-Bradbury model only if multiple scattering effects
due to the dense environment are taken into account when computing the
scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted
to Plasma Sources Science and Technolog
- …