116 research outputs found

    Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles

    New insights on the role of vascular endothelial growth factor in biliary pathophysiology

    No full text
    The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1\u3b1-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies

    Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis

    No full text
    Summary: Maintenance of skeletal muscle mass requires a dynamic balance between protein synthesis and tightly controlled protein degradation by the calpain, autophagy-lysosome, and ubiquitin-proteasome systems (proteostasis). Several sensing and gene-regulatory mechanisms act together to maintain this balance in response to changing conditions. Here, we show that deletion of the highly conserved Rbfox1 and Rbfox2 alternative splicing regulators in adult mouse skeletal muscle causes rapid, severe loss of muscle mass. Rbfox deletion did not cause a reduction in global protein synthesis, but it led to altered splicing of hundreds of gene transcripts, including capn3, which produced an active form of calpain3 protease. Rbfox knockout also led to a reduction in autophagy flux, likely producing a compensatory increase in general protein degradation by the proteasome. Our results indicate that the Rbfox-splicing factors are essential for the maintenance of skeletal muscle mass and proteostasis. : Rbfox-splicing factors are highly conserved and expressed in brain, heart, and skeletal muscle. Singh et al. show that Rbfox proteins are essential for the maintenance of muscle mass and proteostasis, as Rbfox double knockout causes increased calpain and proteasome activity and reduced autophagy flux. Keywords: alternative splicing, proteostasis, calpain, autophagy, muscle biology, Rbfox, proteasom
    • …
    corecore