6,008 research outputs found
Order reductions of Lorentz-Dirac-like equations
We discuss the phenomenon of preacceleration in the light of a method of
successive approximations used to construct the physical order reduction of a
large class of singular equations. A simple but illustrative physical example
is analyzed to get more insight into the convergence properties of the method.Comment: 6 pages, LaTeX, IOP macros, no figure
Observation of a tricritical wedge filling transition in the 3D Ising model
In this Letter we present evidences of the occurrence of a tricritical
filling transition for an Ising model in a linear wedge. We perform Monte Carlo
simulations in a double wedge where antisymmetric fields act at the top and
bottom wedges, decorated with specific field acting only along the wegde axes.
A finite-size scaling analysis of these simulations shows a novel critical
phenomenon, which is distinct from the critical filling. We adapt to
tricritical filling the phenomenological theory which successfully was applied
to the finite-size analysis of the critical filling in this geometry, observing
good agreement between the simulations and the theoretical predictions for
tricritical filling.Comment: 5 pages, 3 figure
Quadratic cavity soliton optical frequency combs
We theoretically investigate the formation of frequency combs in a dispersive second-harmonic generation cavity system, and predict the existence of quadratic cavity solitons in the absence of a temporal walk-off
Nonmonotonic Evolution of the Blocking Temperature in Dispersions of Superparamagnetic Nanoparticles
We use a Monte Carlo approach to simulate the influence of the dipolar
interaction on assemblies of monodisperse superparamagnetic
nanoparticles. We have identified a critical
concentration c*, that marks the transition between two different regimes in
the evolution of the blocking temperature () with interparticle
interactions. At low concentrations (c < c*) magnetic particles behave as an
ideal non-interacting system with a constant . At concentrations c > c*
the dipolar energy enhances the anisotropic energy barrier and
increases with increasing c, so that a larger temperature is required to reach
the superparamagnetic state. The fitting of our results with classical particle
models and experiments supports the existence of two differentiated regimes.
Our data could help to understand apparently contradictory results from the
literature.Comment: 13 pages, 7 figure
Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes
We examine whether metrological resolution beyond coherent states is a
nonclassical effect. We show that this is true for linear detection schemes but
false for nonlinear schemes, and propose a very simple experimental setup to
test it. We find a nonclassicality criterion derived from quantum Fisher
information.Comment: 4 pages, 1 figur
- …