239 research outputs found
Chain length dependence of the polymer-solvent critical point parameters
We report grand canonical Monte Carlo simulations of the critical point
properties of homopolymers within the Bond Fluctuation model. By employing
Configurational Bias Monte Carlo methods, chain lengths of up to N=60 monomers
could be studied. For each chain length investigated, the critical point
parameters were determined by matching the ordering operator distribution
function to its universal fixed-point Ising form. Histogram reweighting methods
were employed to increase the efficiency of this procedure. The results
indicate that the scaling of the critical temperature with chain length is
relatively well described by Flory theory, i.e. \Theta-T_c\sim N^{-0.5}. The
critical volume fraction, on the other hand, was found to scale like \phi_c\sim
N^{-0.37}, in clear disagreement with the Flory theory prediction \phi_c\sim
N^{-0.5}, but in good agreement with experiment. Measurements of the chain
length dependence of the end-to-end distance indicate that the chains are not
collapsed at the critical point.Comment: 13 Pages Revtex, 9 epsf embedded figs. gzipped tar file. To appear in
J. Chem. Phy
Macroscopic studies of short-pulse high-order harmonic generation using the time-dependent Schrödinger equation
We consider high harmonic generation by ultrashort (27â108 fs) laser pulses and calculate the macroscopic response of a collection of atoms to such a short pulse. We show how the harmonic spectrum after propagation through the medium is significantly different from the single-atom spectrum. We use single-atom data calculated by integration of the time-dependent Schrödinger equation and propose a method, based on an adiabatic approximation, to extract the data necessary to perform a propagation calculation. © 1998 The American Physical Society
Attosecond electron spectroscopy using a novel interferometric pump-probe technique
We present an interferometric pump-probe technique for the characterization
of attosecond electron wave packets (WPs) that uses a free WP as a reference to
measure a bound WP. We demonstrate our method by exciting helium atoms using an
attosecond pulse with a bandwidth centered near the ionization threshold, thus
creating both a bound and a free WP simultaneously. After a variable delay, the
bound WP is ionized by a few-cycle infrared laser precisely synchronized to the
original attosecond pulse. By measuring the delay-dependent photoelectron
spectrum we obtain an interferogram that contains both quantum beats as well as
multi-path interference. Analysis of the interferogram allows us to determine
the bound WP components with a spectral resolution much better than the inverse
of the attosecond pulse duration.Comment: 5 pages, 4 figure
Differences in measures of the fiscal multiplier and the reduced-form vector autoregression
The literature has recently asked whether the effects of fiscal policy vary with the state of the economy (Christiano, Eichenbaum, and Rebelo 2011; Rendahl 2014; Auerbach and Gorodnichenko 2012). We study this question in the context of vector autoregression (VAR) estimation. We show formally that, if (asymptotically) the parameters of the reduced-form VAR differ, then the dynamic effects of fiscal policy differ as well, generically and for any set of identification assumptions. Thus, in theory, the econometrician can detect these differences (either across time or space) generically just by relying on reduced-form VAR estimation
Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope
The basic properties of atoms, molecules and solids are governed by electron
dynamics which take place on extremely short time scales. To measure and
control these dynamics therefore requires ultrafast sources of radiation
combined with efficient detection techniques. The generation of extreme
ultraviolet (XUV) attosecond (1 as = 10-18 s) pulses has, for the first time,
made direct measurements of electron dynamics possible. Nevertheless, while
various applications of attosecond pulses have been demonstrated
experimentally, no one has yet captured or controlled the full three
dimensional motion of an electron on an attosecond time scale. Here we
demonstrate an attosecond quantum stroboscope capable of guiding and imaging
electron motion on a sub-femtosecond (1 fs = 10-15 s) time scale. It is based
on a sequence of identical attosecond pulses which are synchronized with a
guiding laser field. The pulse to pulse separation in the train is tailored to
exactly match an optical cycle of the laser field and the electron momentum
distributions are detected with a velocity map imaging spectrometer (VMIS).
This technique has enabled us to guide ionized electrons back to their parent
ion and image the scattering event. We envision that coherent electron
scattering from atoms, molecules and surfaces captured by the attosecond
quantum stroboscope will complement more traditional scattering techniques
since it provides high temporal as well as spatial resolution.Comment: 6 pages, 4 figure
Generation of ultra-short light pulses by a rapidly ionizing thin foil
A thin and dense plasma layer is created when a sufficiently strong laser
pulse impinges on a solid target. The nonlinearity introduced by the
time-dependent electron density leads to the generation of harmonics. The pulse
duration of the harmonic radiation is related to the risetime of the electron
density and thus can be affected by the shape of the incident pulse and its
peak field strength. Results are presented from numerical
particle-in-cell-simulations of an intense laser pulse interacting with a thin
foil target. An analytical model which shows how the harmonics are created is
introduced. The proposed scheme might be a promising way towards the generation
of attosecond pulses.
PACS number(s): 52.40.Nk, 52.50.Jm, 52.65.RrComment: Second Revised Version, 13 pages (REVTeX), 3 figures in ps-format,
submitted for publication to Physical Review E, WWW:
http://www.physik.tu-darmstadt.de/tqe
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines
We investigate the self-phase modulation of intense femtosecond laser pulses
propagating in an ionizing gas and its effects on collective properties of
high-order harmonics generated in the medium. Plasmas produced in the medium
are shown to induce a positive frequency chirp on the leading edge of the
propagating laser pulse, which subsequently drives high harmonics to become
positively chirped. In certain parameter regimes, the plasma-induced positive
chirp can help to generate sharply peaked high harmonics, by compensating for
the dynamically-induced negative chirp that is caused by the steep intensity
profile of intense short laser pulses.Comment: 5 pages, 5 figure
Recommended from our members
Timeâfrequency representation of autoionization dynamics in helium
Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in lightâmatter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various timeâfrequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels
- âŠ