448 research outputs found
Home Automation System based on Intelligent Transducer Enablers
This paper presents a novel home automation system named HASITE (Home
Automation System based on Intelligent Transducer Enablers), which has been
specifically designed to identify and configure transducers easily and quickly.
These features are especially useful in situations where many transducers are
deployed, since their setup becomes a cumbersome task that consumes a
significant amount of time and human resources. HASITE simplifies the
deployment of a home automation system by using wireless networks and both
self-configuration and self-registration protocols. Thanks to the application
of these three elements, HASITE is able to add new transducers by just powering
them up. According to the tests performed in different realistic scenarios, a
transducer is ready to be used in less than 13 s. Moreover, all HASITE
functionalities can be accessed through an API, which also allows for the
integration of third-party systems. As an example, an Android application based
on the API is presented. Remote users can use it to interact with transducers
by just using a regular smartphone or a tablet.Comment: 27 pages, 17 figures, accepted version of Sensors journal articl
Design and Empirical Validation of a LoRaWAN IoT Smart Irrigation System
[Abstract]
In some parts of the world, climate change has led to periods of drought that require managing efficiently the scarce water and energy resources. This paper proposes an IoT smart irrigation system specifically designed for urban areas where remote IoT devices have no direct access to the Internet or to the electrical grid, and where wireless communications are difficult due to the existence of long distances and multiple obstacles. To tackle such issues, this paper proposes a LoRaWAN-based architecture that provides long distance and communications with reduced power consumption. Specifically, the proposed system consists of IoT nodes that collect sensor data and send them to local fog computing nodes or to a remote cloud, which determine an irrigation schedule that considers factors such as the weather forecast or the moist detected by nearby nodes. It is essential to deploy the IoT nodes in locations within the provided coverage range and that guarantee good speed rates and reduced energy consumption. Due to this reason, this paper describes the use of an in-house 3D-ray launching radio-planning tool to determine the best locations for IoT nodes on a real medium-scale scenario (a university campus) that was modeled with precision, including obstacles such as buildings, vegetation, or vehicles. The obtained simulation results were compared with empirical measurements to assess the operating conditions and the radio planning tool accuracy. Thus, it is possible to optimize the wireless network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.This work was funded by Xunta de Galicia (ED431C 2016-045, ED431G/01) and Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER,UE), Project RTI2018-095499-B-C31Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/0
Wireless Channel Assessment of Auditoriums for the Deployment of Augmented Reality Systems for Enhanced Show Experience of Impaired Persons
[Abstract] Auditoriums and theaters are buildings in which concerts, shows, and conferences are held, offering a diverse and dynamic cultural program to citizens. Unfortunately, people with impairments usually have difficulties in fully experiencing all the provided cultural activities, since such environments are not totally adapted to their necessities. For example, in an auditorium, visually impaired users have to be accompanied to their seats by staff, as well as when the person wants to leave the event in the middle of the show (e.g., to go to the toilet), or when he/she wants to move around during breaks. This work is aimed at improving the autonomy of disabled people within the mentioned kinds of environments, as well as enhancing their show experiences by deploying wireless sensor networks and wireless body area networks connected to an augmented reality device (Microsoft HoloLens smart glasses). For that purpose, intensive measurements have been taken in a real scenario (the Baluarte Congress Center and Auditorium of Navarre) located in the city of Pamplona. The results show that this kind of environment presents high wireless interference at different frequency bands, due to the existing wireless systems deployed within them, such as multiple WiFi access points, wireless microphones, or wireless communication systems used by the show staff. Therefore, radio channel simulations have been also performed with the aim of assessing the potential deployment of the proposed solution. The presented work can lead to the deployment of augmented reality systems within auditoriums and theaters, boosting the development of new applications.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; , ED431G/01Ministerio de Ciencia, Innovación y Universidades; RTI2018-095499-B-C3
Iberian acid peatlands: types, origin and general trends of development.
ABSTRACT: In the present study we reviewed the genesis, development and classification of peatlands in the Iberian 1. The region has a wide variety of peatlands which are classified according to their biogeochemical, geomorphological and ecological characteristics into different types of bogs and fens. 2. Most of the peatlands occur in the Atlantic region followed by the Mediterranean and Alpine regions. Fens are more widely distributed than bogs, and blanket and raised bogs are mainly found in the Eurosiberian biogeographical region. 3. In many of the fens, the last active peat-forming cycle occurred during the Late Holocene (43 %). In most of the bogs, the peat-forming cycle occurred in the Middle Holocene (70 %), although in a substantial proportion of blanket bogs these processes occurred in the Early Holocene (30 %). 4. The peat formed in the last active cycle is, on average, thicker in raised bogs (322 cm) than in blanket bogs (257 cm) and fens (156 cm). 5. Vertical peat accumulation rates varied between 16 and 30 yr cm-1 in more than 40 % of the peatlands. The accumulation rates differed significantly between the different types of peatlands and were highest in the raised bogs. The accumulation rates were very variable in the fens. 6. The genesis, evolution and types of Iberian peatlands are similar to those observed in peatlands in northern latitudes in Europe and North America.Our research has been made possible by the following project grants: INCITE09-200-019-PR (Xunta de Galicia Government); DESIRÈ-HAR2013-43701-P (Spanish Ministry of Economy and Competitiveness); and Relictflora-P11-RNM-7033 (Excellence Research Projects Program from the Andalusian Government)
Building Decentralized Fog Computing-Based Smart Parking Systems: From Deterministic Propagation Modeling to Practical Deployment
[Abstract] The traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.Xunta de Galicia; ED431G2019/01Agencia Estatal de Investigación of Spain; TEC2016-75067-C4-1-RAgencia Estatal de Investigación of Spain; RED2018-102668-TAgencia Estatal de Investigación of Spain; PID2019-104958RB-C42Ministerio de Ciencia, Innovación y Universidades; RTI2018-095499-B-C3
Lipofundin-Induced Hyperlipidemia Promotes Oxidative Stress and Atherosclerotic Lesions in New Zealand White Rabbits
Atherosclerosis represents a major cause of death in the world. It is known that Lipofundin 20% induces atherosclerotic lesions in rabbits, but its effects on serum lipids behaviour and redox environment have not been addressed. In this study, New Zealand rabbits were treated with 2 mL/kg of Lipofundin for 8 days. Then, redox biomarkers and serum lipids were determined spectrophotometrically. On the other hand, the development of atherosclerotic lesions was confirmed by eosin/hematoxylin staining and electron microscopy. At the end of the experiment, total cholesterol, triglycerides, cholesterol-LDL, and cholesterol-HDL levels were significantly increased. Also, a high index of biomolecules damage, a disruption of both enzymatic and nonenzymatic defenses, and a reduction of nitric oxide were observed. Our data demonstrated that Lipofundin 20% induces hyperlipidemia, which promotes an oxidative stress state. Due to the importance of these phenomena as risk factors for atherogenesis, we suggest that Lipofundin induces atherosclerosis mainly through these mechanisms
Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops
[Abstract] Navantia, one of largest European shipbuilders, is creating a fog computing based Industrial Cyber-Physical System (ICPS) for monitoring in real-time its pipe workshops in order to track pipes and keep their traceability. The deployment of the ICPS is a unique industrial challenge in terms of communications, since in a pipe workshop there is a significant number of metallic objects with heterogeneous typologies. There are multiple technologies that can be used to track pipes, but this article focuses on Bluetooth 5, which is a relatively new technology that represents a cost-effective solution to cope with harsh environments, since it has been significantly enhanced in terms of low power consumption, range, speed and broadcasting capacity. Thus, it is proposed a Bluetooth 5 fog computing based ICPS architecture that is designed to support physically-distributed and low-latency Industry 4.0 applications that off-load network traffic and computational resources from the cloud. In order to validate the proposed ICPS design, one of the Navantia’s pipe workshops was modeled through an in-house developed 3D-ray launching radio planning simulator that allows for estimating the coverage provided by the deployed Bluetooth 5 fog computing nodes and Bluetooth 5 tags. The experiments described in this article show that the radio propagation results obtained by the simulation tool are really close to the ones obtained through empirical measurements. As a consequence, the simulation tool is able to reduce ICPS design and deployment time and provide guidelines to future developers when deploying Bluetooth 5 fog computing nodes and tags in complex industrial scenarios.Auto-ID for Intelligent Products research line of the Navantia-UDC Joint Research Unit (Grant Number: IN853B-2018/02)
10.13039/100014440-Ministerio de Ciencia, Innovaci??n y Universidades (Grant Number: RTI2018-095499-B-C31
Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes
[Absctract]: Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.This work has been funded by the Xunta de Galicia (by Grant No. ED431C 2020/15, and Grant No. ED431G 2019/01 to support the Centro de Investigación de Galicia “CITIC”), the Agencia Estatal de Investigación of Spain (by grants RTI2018-095499-B-C31, TEC2016-75067-C4-1-R, RED2018-102668-T, and PID2019-104958RB-C42) and ERDF funds of the EU (FEDER Galicia 2014-2020 and AEI/FEDER Programs, UE).Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G 2019/0
Analysis, Design and Empirical Validation of a Smart Campus Based on LoRaWAN
[Abstract] Internet of Things (IoT) applications for smart environments demand challenging
requirements for wireless networks in terms of security, coverage, availability, power consumption, and scalability. The technologies employed so far to cope with IoT scenarios are not yet able to manage simultaneously all these demanding requirements, but recent solutions like Low-Power Wide Area Networks (LPWANs) have emerged as a promising alternative to provide low-cost and
low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the
Long-Range Wide Area Network (LoRaWAN) standard is one of the most recent developments,
receiving attention from both industry and academia. This work presents a comprehensive case
study on the use of LoRaWAN under a realistic scenario within a smart city: a smart campus. Such
a medium-scale scenario has been implemented through an in-house-developed 3D ray launching
radio planning simulator that takes into consideration traffic lights, vehicles, people, buildings, urban
fixtures, and vegetation. The developed tool is able to provide accurate radio propagation estimations
within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network.
These results are compared with an empirical validation in order to assess the operating conditions
and the system accuracy. Moreover, the presented results provide some guidelines for IoT vendors,
network operators, and city planners to investigate further deployments of LoRaWAN for other
medium-scale smart city applicationsXunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación; TEC2016-75067-C4-1-
Analysis, Design and Practical Validation of an Augmented Reality Teaching System Based on Microsoft HoloLens 2 and Edge Computing
[Absctract]: In recent years, the education sector has incorporated the use of new technologies and computing devices into classrooms, which allowed for implementing new ways for enhancing teaching and learning. One of these new technologies is augmented reality (AR), which enables creating experiences that mix reality and virtual elements in an attractive and visual way, thus helping teachers to foster student interest in learning certain subjects and abstract concepts in novel visual ways. This paper proposes to harness the potential of the latest AR devices in order to enable giving AR-enabled lectures and hands-on labs. Specifically, it proposes an architecture for providing low-latency AR education services in a classroom or a laboratory. Such a low latency is achieved thanks to the use of edge computing devices, which offload the cloud from the traditional tasks that are required by dynamic AR applications (e.g., near real-time data processing, communications among AR devices). Depending on the specific AR application and the number of users, the wireless link (usually WiFi) could be overloaded if the network has not been properly designed, and the overall performance of the application can be compromised, leading to high latency and even to wireless communication failure. In order to tackle this issue, radio channel measurements and simulation results have been performed by means of an in-house developed 3D ray-launching tool, which is able to model and simulate the behaviour of an AR-enabled classroom/laboratory in terms of radio propagation and quality of service. To corroborate the obtained theoretical results, a Microsoft HoloLens 2 teaching application was devised and tested, thus demonstrating the feasibility of the proposed approach.This work has been funded by the Xunta de Galicia (by grant ED431C 2020/15, and grant ED431G
2019/01 to support the Centro de Investigación de Galicia “CITIC”), the Agencia Estatal de Investigación of Spain
(by grants TEC2016-75067-C4-1-R, RED2018-102668-T and PID2019-104958RB-C42) and ERDF funds of the EU
(FEDER Galicia 2014-2020 and AEI/FEDER Programs, UE).Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G 2019/0
- …