103 research outputs found
Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Pad\'e approximation
Complex analytical structure of Stokes wave for two-dimensional potential
flow of the ideal incompressible fluid with free surface and infinite depth is
analyzed. Stokes wave is the fully nonlinear periodic gravity wave propagating
with the constant velocity. Simulations with the quadruple and variable
precisions are performed to find Stokes wave with high accuracy and study the
Stokes wave approaching its limiting form with radians angle on the
crest. A conformal map is used which maps a free fluid surface of Stokes wave
into the real line with fluid domain mapped into the lower complex half-plane.
The Stokes wave is fully characterized by the complex singularities in the
upper complex half-plane. These singularities are addressed by rational
(Pad\'e) interpolation of Stokes wave in the complex plane. Convergence of
Pad\'e approximation to the density of complex poles with the increase of the
numerical precision and subsequent increase of the number of approximating
poles reveals that the only singularities of Stokes wave are branch points
connected by branch cuts. The converging densities are the jumps across the
branch cuts. There is one branch cut per horizontal spatial period of
Stokes wave. Each branch cut extends strictly vertically above the
corresponding crest of Stokes wave up to complex infinity. The lower end of
branch cut is the square-root branch point located at the distance from
the real line corresponding to the fluid surface in conformal variables. The
limiting Stokes wave emerges as the singularity reaches the fluid surface.
Tables of Pad\'e approximation for Stokes waves of different heights are
provided. These tables allow to recover the Stokes wave with the relative
accuracy of at least . The tables use from several poles to about
hundred poles for highly nonlinear Stokes wave with Comment: 38 pages, 9 figures, 4 tables, supplementary material
Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times
We develop a statistical theory of stimulated Brillouin backscatter (BSBS) of
a spatially and temporally partially incoherent laser beam for laser fusion
relevant plasma. We find a new collective regime of BSBS (CBSBS) with intensity
threshold controlled by diffraction, an insensitive function of the laser
coherence time, , once light travel time during exceeds a laser
speckle length. The BSBS spatial gain rate is approximately the sum of that due
to CBSBS, and a part which is independent of diffraction and varies linearly
with . We find that the bandwidth of KrF-laser-based fusion systems would
be large enough to allow additional suppression of BSBS.Comment: 8 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1105.209
Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves
We study the long-time evolution of gravity waves on deep water exited by the
stochastic external force concentrated in moderately small wave numbers. We
numerically implement the primitive Euler equations for the potential flow of
an ideal fluid with free surface written in canonical variables, using
expansion of the Hamiltonian in powers of nonlinearity of up to fourth order
terms.
We show that due to nonlinear interaction processes a stationary energy
spectrum close to is formed. The observed spectrum can be
interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of
energy.Comment: 4 pages, 5 figure
Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation
By performing two parallel numerical experiments -- solving the dynamical
Hamiltonian equations and solving the Hasselmann kinetic equation -- we
examined the applicability of the theory of weak turbulence to the description
of the time evolution of an ensemble of free surface waves (a swell) on deep
water. We observed qualitative coincidence of the results.
To achieve quantitative coincidence, we augmented the kinetic equation by an
empirical dissipation term modelling the strongly nonlinear process of
white-capping. Fitting the two experiments, we determined the dissipation
function due to wave breaking and found that it depends very sharply on the
parameter of nonlinearity (the surface steepness). The onset of white-capping
can be compared to a second-order phase transition. This result corroborates
with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter
Extraction processing of concentrated solutions of uranyl nitrate with high impurities content
Process flowsheet of recycling uranium concentrated solutions with its purification from insoluble impurities of iron, silicon, molybdenum, calcium oxides and hydroxides and soluble impurities with application of centrifugal extractors cascade has been developed and suggested for commercial introduction. The process was carried out at extractant saturation (30 % tributyl phosphate in hydrocarbon diluent) in extraction assembly lower than a limiting level (85...95 g/l) and in wash assembly - at limiting saturation (up to 120 g/l). As a result the waste uranium content in water-tail solutions 0,01...0,04 g/l and minimal content of impurities in re-extractors is provide
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ ΡΡ Π΅ΠΌ Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠΈ Π΄Π»Ρ ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π²ΡΠΎΡΠΎΠΉ ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ
The paper considers two schemes of the urban distributive electric network for supply of the second and third category consumers for whom indicators of reliability have been determined.As for a network scheme of the 2nd category it has been determined that while installing low-oil and vacuum switches at a distributive point the most remote transformer substation has the highest non-availabilityΒ factor which is higher of the corresponding non-availabilityΒ factor of the nearest transformer substation by 1,21β1,23 foldΒ accordingly.As for a network scheme of the 3rd category consumers it has been obtained the data that reliability of consumers receiving supply from bus-bars of transformer substations with 0,38Β kW voltage changesΒ significantly (by 1,2β1,9-fold) while changing a breakpoint of the network with 10 kW voltage.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π΄Π²Π΅ ΡΡ
Π΅ΠΌΡ Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠΈ Π΄Π»Ρ ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π²ΡΠΎΡΠΎΠΉ ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ
Π±ΡΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ.ΠΠ»Ρ ΡΡ
Π΅ΠΌΡ ΡΠ΅ΡΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π²ΡΠΎΡΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π±ΡΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΌΠ°Π»ΠΎΠΌΠ°ΡΠ»ΡΠ½ΡΡ
ΠΈ Π²Π°ΠΊΡΡΠΌΠ½ΡΡ
Β Π²ΡΠΊΠ»ΡΡΠ°ΡΠ΅Π»Π΅ΠΉ Π½Π° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΏΡΠ½ΠΊΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄Π°Π»Π΅Π½Π½Π°Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ½Π°Ρ ΠΏΠΎΠ΄ΡΡΠ°Π½ΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°ΠΌΡΠΉ Π²ΡΡΠΎΠΊΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π½Π΅Π³ΠΎΡΠΎΠ²Π½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π½Π΅Π³ΠΎΡΠΎΠ²Π½ΠΎΡΡΠΈ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅ΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄ΡΡΠ°Π½ΡΠΈΠΈ Π² 1,21β1,23 ΡΠ°Π·Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.ΠΠ»Ρ ΡΡ
Π΅ΠΌΡ ΡΠ΅ΡΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΡΠ΅ΡΡΠ΅ΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π±ΡΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ, ΡΡΠΎ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ, ΠΏΠΈΡΠ°ΡΡΠΈΡ
ΡΡ ΠΎΡ ΡΠΈΠ½ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄ΡΡΠ°Π½ΡΠΈΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 0,38 ΠΊΠ, Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ (Π² 1,2β1,9 ΡΠ°Π·Π°) ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ ΡΠ°Π·ΡΡΠ²Π° ΡΠ΅ΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 10 ΠΊΠ
ΠΠΠΠΠΠ Π‘Π’Π Π£ΠΠ’Π£Π ΠΠΠ ΠΠΠΠΠΠΠΠ‘Π’Π ΠΠΠΠΠΠ«Π₯ Π‘Π₯ΠΠ ΠΠΠΠΠ’Π ΠΠ§ΠΠ‘ΠΠΠ₯ Π‘ΠΠΠΠΠΠΠΠΠ ΠΠ’ΠΠΠΠ«Π₯ ΠΠΠΠΠ’Π ΠΠ‘Π’ΠΠΠ¦ΠΠ
The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ Π³Π»Π°Π²Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π΄Π²Π° Π±Π»ΠΎΠΊΠ° ΠΌΠΎΡΠ½ΠΎΡΡΡΡ 1200 ΠΠΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ. ΠΠ°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ, ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΠΎΡΡΡ, ΠΌΠ°Π½Π΅Π²ΡΠ΅Π½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π΅Π΅ Π³Π»Π°Π²Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΠΎΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΎΡ ΡΡ
Π΅ΠΌΡ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ Π΅Π΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ β Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ. ΠΠ»Π°Π²Π½ΡΠ΅ ΡΡ
Π΅ΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ Π²ΡΠ±ΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡ
Π΅ΠΌΡ ΡΠ΅ΡΠ΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΡΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Π΄Π°Π½Π½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΡ. Π‘Ρ
Π΅ΠΌΠ° ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ ΠΊ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΠ΅ Π² Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡ
ΠΎΠ΄Π½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
Π½Π° Π²ΡΠ΅Ρ
ΡΡΠ°Π΄ΠΈΡΡ
ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ Π²ΡΠ΄Π°ΡΡ ΠΏΠΎΠ»Π½ΠΎΠΉ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΈ ΠΈ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ Π΅Π΅ ΡΠ°Π±ΠΎΡΡ Π² ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΠ΅ Π±Π΅Π· Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ°Π²Π°ΡΠΈΠΉΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠΉ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ ΠΏΡΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΠΎΠΉ ΠΎΡΡ
ΠΎΠ΄ΡΡΠ΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ. ΠΡΠΈ Π²ΡΠ±ΠΎΡΠ΅ Π³Π»Π°Π²Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ: Π΅Π΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² ΠΈ ΠΈΡ
ΡΠΈΡΠ»ΠΎ; ΠΎΡΠ΅ΡΠ΅Π΄Π½ΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠ°Π½ΡΠΈΠΈ ΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΡ; Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ
Π²ΡΠ΄Π°Π΅ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³ΠΈΡ ΡΡΠ°Π½ΡΠΈΠΈ; ΡΠΎΠΊΠΈ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ Π΄Π»Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΈΡ
ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΡΡ
Π΅ΠΌΠ½ΡΠΌ ΠΏΡΡΠ΅ΠΌ; Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΡΠ΅ΡΡΠ½Π° ΠΏΡΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ Π²ΡΠΊΠ»ΡΡΠ°ΡΠ΅Π»Ρ. ΠΠΎΠ΄Π΅Π»Ρ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ Π³Π»Π°Π²Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΏΡΠΈΠ·Π²Π°Π½Π° Π²ΡΡΠ²ΠΈΡΡ Π²ΡΠ΅ Π²ΠΈΠ΄Ρ Π°Π²Π°ΡΠΈΠΉ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΏΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ ΠΎΡΠΊΠ°Π·ΠΎΠ² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ½ΡΠΌΠΈ ΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΡΠ΅ΠΆΠΈΠΌΠ°ΠΌΠΈ, ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΌΠΈΡΡ ΡΠΎΡΡΠ°Π²ΠΎΠΌ ΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°Π΅ΠΌΠΎΡΡΡΡ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π°Π²Π°ΡΠΈΠΉ ΠΈΠ·-Π·Π° ΠΎΡΠΊΠ°Π·ΠΎΠ² ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΈ ΡΡΡΡΠΎΠΉΡΡΠ² ΡΠ΅Π»Π΅ΠΉΠ½ΠΎΠΉ Π·Π°ΡΠΈΡΡ ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ
- β¦