103 research outputs found

    Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Pad\'e approximation

    Full text link
    Complex analytical structure of Stokes wave for two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth is analyzed. Stokes wave is the fully nonlinear periodic gravity wave propagating with the constant velocity. Simulations with the quadruple and variable precisions are performed to find Stokes wave with high accuracy and study the Stokes wave approaching its limiting form with 2Ο€/32\pi/3 radians angle on the crest. A conformal map is used which maps a free fluid surface of Stokes wave into the real line with fluid domain mapped into the lower complex half-plane. The Stokes wave is fully characterized by the complex singularities in the upper complex half-plane. These singularities are addressed by rational (Pad\'e) interpolation of Stokes wave in the complex plane. Convergence of Pad\'e approximation to the density of complex poles with the increase of the numerical precision and subsequent increase of the number of approximating poles reveals that the only singularities of Stokes wave are branch points connected by branch cuts. The converging densities are the jumps across the branch cuts. There is one branch cut per horizontal spatial period Ξ»\lambda of Stokes wave. Each branch cut extends strictly vertically above the corresponding crest of Stokes wave up to complex infinity. The lower end of branch cut is the square-root branch point located at the distance vcv_c from the real line corresponding to the fluid surface in conformal variables. The limiting Stokes wave emerges as the singularity reaches the fluid surface. Tables of Pad\'e approximation for Stokes waves of different heights are provided. These tables allow to recover the Stokes wave with the relative accuracy of at least 10βˆ’2610^{-26}. The tables use from several poles to about hundred poles for highly nonlinear Stokes wave with vc/λ∼10βˆ’6.v_c/\lambda\sim 10^{-6}.Comment: 38 pages, 9 figures, 4 tables, supplementary material

    Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    Full text link
    We develop a statistical theory of stimulated Brillouin backscatter (BSBS) of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new collective regime of BSBS (CBSBS) with intensity threshold controlled by diffraction, an insensitive function of the laser coherence time, TcT_c, once light travel time during TcT_c exceeds a laser speckle length. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with TcT_c. We find that the bandwidth of KrF-laser-based fusion systems would be large enough to allow additional suppression of BSBS.Comment: 8 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1105.209

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to ∣k∣∼kβˆ’7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Extraction processing of concentrated solutions of uranyl nitrate with high impurities content

    Get PDF
    Process flowsheet of recycling uranium concentrated solutions with its purification from insoluble impurities of iron, silicon, molybdenum, calcium oxides and hydroxides and soluble impurities with application of centrifugal extractors cascade has been developed and suggested for commercial introduction. The process was carried out at extractant saturation (30 % tributyl phosphate in hydrocarbon diluent) in extraction assembly lower than a limiting level (85...95 g/l) and in wash assembly - at limiting saturation (up to 120 g/l). As a result the waste uranium content in water-tail solutions 0,01...0,04 g/l and minimal content of impurities in re-extractors is provide

    ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ надСТности схСм городской элСктричСской сСти для питания ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ

    Get PDF
    The paper considers two schemes of the urban distributive electric network for supply of the second and third category consumers for whom indicators of reliability have been determined.As for a network scheme of the 2nd category it has been determined that while installing low-oil and vacuum switches at a distributive point the most remote transformer substation has the highest non-availabilityΒ  factor which is higher of the corresponding non-availabilityΒ  factor of the nearest transformer substation by 1,21–1,23 foldΒ  accordingly.As for a network scheme of the 3rd category consumers it has been obtained the data that reliability of consumers receiving supply from bus-bars of transformer substations with 0,38Β kW voltage changesΒ  significantly (by 1,2–1,9-fold) while changing a breakpoint of the network with 10 kW voltage.РассмотрСны Π΄Π²Π΅ схСмы городской Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ элСктричСской сСти для питания ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ надСТности.Для схСмы сСти ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ установкС маломасляных ΠΈ Π²Π°ΠΊΡƒΡƒΠΌΠ½Ρ‹Ρ…Β  Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ удалСнная трансформаторная подстанция ΠΈΠΌΠ΅Π΅Ρ‚ самый высокий коэффициСнт нСготовности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ большС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ коэффициСнта нСготовности блиТайшСй трансформаторной подстанции Π² 1,21–1,23 Ρ€Π°Π·Π° соотвСтствСнно.Для схСмы сСти ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΎΡ‚ шин трансформаторной подстанции напряТСниСм 0,38 ΠΊΠ’, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ (Π² 1,2–1,9 Ρ€Π°Π·Π°) измСняСтся ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π° сСти напряТСниСм 10 ΠΊΠ’

    ΠΠΠΠ›Π˜Π— Π‘Π’Π Π£ΠšΠ’Π£Π ΠΠžΠ™ ΠΠΠ”Π•Π–ΠΠžΠ‘Π’Π˜ ГЛАВНЫΠ₯ Π‘Π₯Π•Πœ Π­Π›Π•ΠšΠ’Π Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘ΠžΠ•Π”Π˜ΠΠ•ΠΠ˜Π™ АВОМНЫΠ₯ Π­Π›Π•ΠšΠ’Π ΠžΠ‘Π’ΠΠΠ¦Π˜Π™

    Get PDF
    The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ Π³Π»Π°Π²Π½ΠΎΠΉ схСмы элСктричСских соСдинСний Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ элСктричСской станции, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ установлСно Π΄Π²Π° Π±Π»ΠΎΠΊΠ° ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 1200 ΠœΠ’Ρ‚ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ. ΠΠ°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ, ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ, ΠΌΠ°Π½Π΅Π²Ρ€Π΅Π½Π½Ρ‹Π΅ свойства Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ элСктричСской станции Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π΅Π΅ Π³Π»Π°Π²Π½ΠΎΠΉ схСмой, поэтому Π²Ρ‹Π±ΠΎΡ€ схСмы ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ Π΅Π΅ состояниС Π² процСссС эксплуатации – ваТнСйшиС Π·Π°Π΄Π°Ρ‡ΠΈ. Π“Π»Π°Π²Π½Ρ‹Π΅ схСмы элСктричСских соСдинСний Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ элСктричСской станции Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ΡΡ Π½Π° основании схСмы сСтСй энСргосистСмы ΠΈ Ρ‚ΠΎΠ³ΠΎ участка, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ присоСдиняСтся данная элСктростанция. Π‘Ρ…Π΅ΠΌΠ° присоСдинСния Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ элСктричСской станции ΠΊ энСргосистСмС Π² Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… исходных Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Π½Π° всСх стадиях сооруТСния Ρ‚Π°ΠΊΠΎΠΉ станции Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ Π²Ρ‹Π΄Π°Ρ‡Ρƒ ΠΏΠΎΠ»Π½ΠΎΠΉ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠΉ мощности Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ элСктростанции ΠΈ сохранСниС устойчивости Π΅Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² энСргосистСмС Π±Π΅Π· воздСйствия ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ°Π²Π°Ρ€ΠΈΠΉΠ½ΠΎΠΉ систСмной Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΠΏΡ€ΠΈ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ любой отходящСй Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи. ΠŸΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ Π³Π»Π°Π²Π½ΠΎΠΉ схСмы ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ: Сдиничная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ устанавливаСмых Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΈ ΠΈΡ… число; ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΡΡ‚ΡŒ развития станции ΠΈ энСргосистСмы; напряТСния, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… выдаСтся элСктроэнСргия станции; Ρ‚ΠΎΠΊΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания для Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ устройства ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ напряТСния ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈΡ… ограничСния схСмным ΠΏΡƒΡ‚Π΅ΠΌ; наибольшая ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ потСряна ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΈ любого Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»Ρ. МодСль надСТности Π³Π»Π°Π²Π½ΠΎΠΉ схСмы элСктричСских соСдинСний ΠΏΡ€ΠΈΠ·Π²Π°Π½Π° Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ всС Π²ΠΈΠ΄Ρ‹ Π°Π²Π°Ρ€ΠΈΠΉ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΈ совпадСнии ΠΎΡ‚ΠΊΠ°Π·ΠΎΠ² элСмСнтов с Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΈ эксплуатационными Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ составом ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°Π΅ΠΌΠΎΡΡ‚ΡŒΡŽ оборудования, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π°Π²Π°Ρ€ΠΈΠΉ ΠΈΠ·-Π·Π° ΠΎΡ‚ΠΊΠ°Π·ΠΎΠ² срабатывания Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈ устройств Ρ€Π΅Π»Π΅ΠΉΠ½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠΊΠΈ
    • …
    corecore