24,311 research outputs found
Correlated Resource Models of Internet End Hosts
Understanding and modelling resources of Internet end hosts is essential for
the design of desktop software and Internet-distributed applications. In this
paper we develop a correlated resource model of Internet end hosts based on
real trace data taken from the SETI@home project. This data covers a 5-year
period with statistics for 2.7 million hosts. The resource model is based on
statistical analysis of host computational power, memory, and storage as well
as how these resources change over time and the correlations between them. We
find that resources with few discrete values (core count, memory) are well
modeled by exponential laws governing the change of relative resource
quantities over time. Resources with a continuous range of values are well
modeled with either correlated normal distributions (processor speed for
integer operations and floating point operations) or log-normal distributions
(available disk space). We validate and show the utility of the models by
applying them to a resource allocation problem for Internet-distributed
applications, and demonstrate their value over other models. We also make our
trace data and tool for automatically generating realistic Internet end hosts
publicly available
A new approach to axial coupling constants in the QCD sum rule
We derive new QCD sum rules for the axial coupling constants by considering
two-point correlation functions of the axial-vector currents in a one nucleon
state. The QCD sum rules tell us that the axial coupling constants are
expressed by nucleon matrix elements of quark and gluon operators which are
related to the sigma terms and the moments of parton distribution functions.
The results for the iso-vector axial coupling constants and the 8th component
of the SU(3) octet are in good agreement with experiment.Comment: 10 pages, 1 figure include
Realization of Strong Coupling Fixed Point in Multilevel Kondo Models
Impurity four- and six-level Kondo model, in which an ion is tunneling among
four- and six-stable points and interacting with surrounding conduction
electrons, are investigated by using the perturbative and numerical
renormalization group methods. It is shown that purely orbital Kondo effects
occur at low temperatures in these systems which are direct generalizations of
the Kondo effect in the so-called two-level system. This result offers a good
explanation for the enhanced and magnetically robust Sommerfeld coefficient
observed in SmOs_4Sb_12 and some other filled-skutterudites.Comment: 3 pages, 3 figures, for proceedings of ASR-WYP-2005. To be published
in Journal of Physical Society Japan supplemen
A formulation of the Yang-Mills theory as a deformation of a topological field theory based on background field method and quark confinement problem
By making use of the background field method, we derive a novel reformulation
of the Yang-Mills theory which was proposed recently by the author to derive
quark confinement in QCD. This reformulation identifies the Yang-Mills theory
with a deformation of a topological quantum field theory. The relevant
background is given by the topologically non-trivial field configuration,
especially, the topological soliton which can be identified with the magnetic
monopole current in four dimensions. We argue that the gauge fixing term
becomes dynamical and that the gluon mass generation takes place by a
spontaneous breakdown of the hidden supersymmetry caused by the dimensional
reduction. We also propose a numerical simulation to confirm the validity of
the scheme we have proposed. Finally we point out that the gauge fixing part
may have a geometric meaning from the viewpoint of global topology where the
magnetic monopole solution represents the critical point of a Morse function in
the space of field configurations.Comment: 45 pages, 3 figures included in LaTe
Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory
We discuss the renormalization of a BRST and anti-BRST invariant composite
operator of mass dimension 2 in Yang-Mills theory with the general BRST and
anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this
study stems from a recent claim that the non-vanishing vacuum condensate of the
composite operator in question can be an origin of mass gap and quark
confinement in any manifestly covariant gauge, as proposed by one of the
authors. First, we obtain the renormalization group flow of the Yang-Mills
theory. Next, we show the multiplicative renormalizability of the composite
operator and that the BRST and anti-BRST invariance of the bare composite
operator is preserved under the renormalization. Third, we perform the operator
product expansion of the gluon and ghost propagators and obtain the Wilson
coefficient corresponding to the vacuum condensate of mass dimension 2.
Finally, we discuss the connection of this work with the previous works and
argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected.
A paragraph is added in the beginning of section 5.3. Two equations (7.1) and
(7.2) are added. A version to be published in Phys. Rev.
Future of Ultraviolet Astronomy Based on Six Years of IUE Research
Physical insights into the various astronomical objects which were studied using the International Ultraviolet Explorer (IUE) satellite. Topics covered included galaxies, cool stars, hot stars, close binaries, variable stars, the interstellar medium, the solar system, and IUE follow-on missions
On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge
Recent work claimed that the off-diagonal gluons (and ghosts) in pure
Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a
dynamical mass through an off-diagonal ghost condensate. This condensation
takes place due to a quartic ghost interaction, unavoidably present in MAG for
renormalizability purposes. The off-diagonal mass can be seen as evidence for
Abelian dominance. We discuss why ghost condensation of the type discussed in
those works cannot be the reason for the off-diagonal mass and Abelian
dominance, since it results in a tachyonic mass. We also point out what the
full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex
Recommended from our members
Evolution of mixing state of black carbon in polluted air from Tokyo
The evolution of the mixing state of black carbon aerosol (BC) was investigated using a single-particle soot photometer (SP2) in polluted air transported from Tokyo. Ground-based measurements of aerosols and trace gases were conducted at a suburban site (Kisai) 50 km north of Tokyo during July-August 2004. The ratio of 2-pentyl nitrate (2-PeONO2) to n-pentane (n-C5H12) was used to derive the photochemical age. According to the SP2 measurement, the number fraction of thickly coated BC (Shell/Corel Ratio > ca. 2) with a core diameter of 180 nm increased at the rate of 1.9% h-1, as the photochemical clock proceeded under land-sea breeze circulation. Positive matrix factorization was applied to investigate the time-dependent contributions of different coating materials using the mass concentrations of sulfate, nitrate, and organics measured using an aerosol mass spectrometer. The main coating materials found in this study were sulfate and organics. Copyright 2007 by the American Geophysical Union
- …