893 research outputs found

    Development of portable NMR polarimeter system for polarized HD target

    Full text link
    A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear Physics (RCNP), Osaka university and is transported to SPring-8. The HD polarization should be monitored at both places. We have constructed the portable NMR polarimeter system by replacing the devices in the conventional system with the software system with PCI eXtensions for Instrumentation (PXI). The weight of the NMR system is downsized from 80 kg to 7 kg, and the cost is reduced to 25%. We check the performance of the portable NMR polarimeter system. The signal-to-noise (S/N) ratio of the NMR signal for the portable system is about 50% of that for the conventional NMR system. This performance of the portable NMR system is proved to be compatible with the conventional NMR system for the polarization measurement.Comment: 6 page, 8 figures, 2011/Mar/9 Replace Author

    Massive Decaying Tau Neutrino and Big Bang Nucleosynthesis

    Full text link
    Comparing Big Bang Nucleosynthesis predictions with the light element abundances inferred from observational data, we can obtain the strong constraints on some neutrino properties, e.g. number of neutrino species, mass, lifetime. Recently the deuterium abundances were measured in high red-shift QSO absorption systems. It is expected that they are close to the primordial values, however, two groups have reported inconsistent values which are different in one order of magnitude. In this paper we show how we can constrain on Ď„\tau neutrino mass and its lifetime in each case when we adopt either high or low deuterium data. We find that if 0.01 \sec \lesssim \tau_{\nutau} \lesssim 1 \sec and 10\mev \lesssim m_{\nutau} \lesssim 24\mev, the theoretical predictions agree with the low D/H abundances. On the other hand if we adopt the high D/H abundances, we obtain the upper bound of Ď„\tau neutrino mass, m_{\nutau}\lesssim 20 \mev.Comment: 11 pages, using LATEX and four postscript figure

    Possible solution to the 7^7Li problem by the long lived stau

    Full text link
    Modification of standard big-bang nucleosynthesis is considered in the minimal supersymmetric standard model to resolve the excessive theoretical prediction of the abundance of primordial lithium 7. We focus on the stau as a next-lightest superparticle, which is long lived due to its small mass difference with the lightest superparticle. It provides a number of additional decay processes of 7Li\mathrm{^{7}Li} and 7Be\mathrm{^{7}Be}. A particularly important process is the internal conversion in the stau-nucleus bound state, which destroys the 7Li\mathrm{^{7}Li} and 7Be\mathrm{^{7}Be} effectively. We show that the modification can lead to a prediction consistent with the observed abundance of 7Li\mathrm{^{7}Li}.Comment: 6 pages, 5 figure

    Big-Bang Nucleosynthesis with Unstable Gravitino and Upper Bound on the Reheating Temperature

    Full text link
    We study the effects of the unstable gravitino on the big-bang nucleosynthesis. If the gravitino mass is smaller than \sim 10 TeV, primordial gravitinos produced after the inflation are likely to decay after the big-bang nucleosynthesis starts, and the light element abundances may be significantly affected by the hadro- and photo-dissociation processes as well as by the p n conversion process. We calculate the light element abundances and derived upper bound on the reheating temperature after the inflation. In our analysis, we calculate the decay parameters of the gravitino (i.e., lifetime and branching ratios) in detail. In addition, we performed a systematic study of the hadron spectrum produced by the gravitino decay, taking account of all the hadrons produced by the decay products of the gravitino (including the daughter superparticles). We discuss the model-dependence of the upper bound on the reheating temperature.Comment: 32 pages, 11 figure

    Neutralino Dark Matter from Heavy Gravitino Decay

    Full text link
    We propose a new scenario of non-thermal production of neutralino cold dark matter, in which the overproduction problem of lightest supersymmetric particles (LSPs) in the standard thermal history is naturally solved. The mechanism requires a heavy modulus field which decays mainly to ordinary particles releasing large entropy to dilute gravitinos produced just after inflation and thermal relics of LSPs. Significant amount of gravitinos are also pair-produced at the decay, which subsequently decay into the neutralinos. We identify the regions of the parameter space in which the requisite abundance of the neutralino dark matter is obtained without spoiling the big-bang nucleosynthesis by injection of hadronic showers from gravitino decay. The neutralino abundance obtained in this mechanism is insensitive to the details of the superparticle mass spectrum, unlike the standard thermal abundance. We also briefly mention the testability of the scenario in future experiments.Comment: 19 pages, 5 figures, to appear in Phys. Rev.

    Solving the cosmic lithium problems with primordial late-decaying particles

    Full text link
    We investigate the modifications to predictions for the abundances of light elements from standard Big-Bang nucleosynthesis when exotic late-decaying particles with lifetimes exceeding ~1 sec are prominent in the early Universe. Utilising a model-independent analysis of the properties of these long-lived particles, we identify the parameter space associated with models that are consistent with all observational data and hence resolve the much discussed discrepancies between observations and theoretical predictions for the abundances of Li^7 and Li^6.Comment: 6 pages, 3 figures, submitted to Physical Review D; minor changes to reference

    Big Bang Nucleosynthesis with Long Lived Charged Massive Particles

    Get PDF
    We consider Big Bang Nucleosynthesis (BBN) with long lived charged massive particles. Before decaying, the long lived charged particle recombines with a light element to form a bound state like a hydrogen atom. This effect modifies the nuclear reaction rates during the BBN epoch through the modifications of the Coulomb field and the kinematics of the captured light elements, which can change the light element abundances. It is possible that the heavier nuclei abundances such as 7^7Li and 7^7Be decrease sizably, while the ratios YpY_p, D/H, and 3^3He/H remain unchanged. This may solve the current discrepancy between the BBN prediction and the observed abundance of 7^7Li. If future collider experiments found signals of a long-lived charged particle inside the detector, the information of its lifetime and decay properties could provide insights to understand not only the particle physics models but also the phenomena in the early universe in turn.Comment: 20 pages, 6 figures, published version in Physical Review
    • …
    corecore