13 research outputs found

    Particle transport in recirculated liquid metal flows

    Get PDF
    Purpose - Aims to present recent activities in numerical modeling of turbulent transport processes in induction crucible furnace. Design/methodology/approach - 3D large eddy simulation (LES) method was applied for fluid flow modeling in a cylindrical container and transport of 30,000 particles was investigated with Lagrangian approach. Findings - Particle accumulation near the side crucible boundary is determined mainly by the ρp/ρ ratio and according to the presented results. Particle settling velocity is of the same order as characteristic melt flow velocity. Particle concentration homogenization time depends on the internal flow regime. Separate particle tracks introduce very intensive mass exchange between the different parts of the melt in the whole volume of the crucible. Originality/value - Transient simulation of particle transport together with LES fluid flow simulation gives the opportunity of accurate prediction of admixture concentartion distribution in the melt. © Emerald Group Publishing Limited

    Influence of the channel design on the heat and mass exchange of induction channel furnace

    Get PDF
    Purpose - The purpose of this paper is to present in-depth numerical modelling of heat and mass exchange in industrial induction channel furnace (ICF). Design/methodology/approach - The turbulent heat and mass exchange in the melt is calculated using a three-dimensional (3D) electromagnetic model and a 3D transient large eddy simulation method. The simulation model has been verified by flow velocity and temperature measurements, which were carried out using an industrial sized channel inductor operating with Wood's metal as a low temperature model melt. Findings - The ICF is well-established for melting, holding and casting in the metallurgical industry. But there are still open questions regarding the heat and mass exchange in the inductor channel itself and between the channel and the melt bath. Different new designed channel geometries have been investigated numerically in order to find an optimized shape of the channel, which leads to an improved heat and mass transfer. Originality/value - Long-term computations for the industrial ICF have been performed. Low frequency oscillations of the temperature maximum and its position in the ICF channel are considered. © 2011 Emerald Group Publishing Limited. All rights reserved
    corecore