14 research outputs found

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    A quality design solution for object synchronization

    No full text

    Adding Design by Contract to the Ada Language

    No full text

    jContractor: A Reflective Java Library to Support Design By Contract

    No full text

    Checking the conformance of Java classes against algebraic specifications

    No full text
    Abstract. We present and evaluate an approach for the run-time conformance checking of Java classes against property-driven algebraic specifications. Our proposal consists in determining, at run-time, whether the classes subject to analysis behave as required by the specification. The key idea is to reduce the conformance checking problem to the runtime monitoring of contract-annotated classes, a process supported today by several runtime assertion-checking tools. Our approach comprises a rather conventional specification language, a simple language to map specifications into Java types, and a method to automatically generate monitorable classes from specifications, allowing for a simple, but effective, runtime monitoring of both the specified classes and their clients.

    Race Scheduling Controls for Object Systems

    No full text
    corecore