1,385 research outputs found
Valproate, a Mood Stabilizer, Induces WFS1 Expression and Modulates Its Interaction with ER Stress Protein GRP94
Valproate is a standard treatment for bipolar disorder and a first-line mood stabilizer. The molecular mechanisms underlying its actions in bipolar disorder are unclear. It has been suggested that the action of valproate is linked to changes in gene expression and induction of endoplasmic reticulum (ER) stress-response proteins.Here we show that valproate modulates the ER stress response through the regulation of WFS1, an important component for mitigating ER stress. Therapeutic concentrations of valproate induce expression of WFS1 mRNA and activate the WFS1 promoter. In addition, WFS1 forms a complex with GRP94, an ER stress-response protein, in which valproate dose-dependently enhances its dissociation from GRP94.These results suggest that the therapeutic effects of valproate in bipolar disorder may be mediated by WFS1 expression and its dissociation from GRP94
Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways
The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies
Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy
The influence of the joint line remnant (JLR) on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant
Charge Order with Structural Distortion in Organic Conductors: Comparison between \theta-(ET)2RbZn(SCN)4 and \alpha-(ET)2I3
Charge ordering with structural distortion in quasi-two-dimensional organic
conductors \theta-(ET)2RbZn(SCN)4 (ET=BEDT-TTF) and \alpha-(ET)2I3 is
investigated theoretically. By using the Hartree-Fock approximation for an
extended Hubbard model which includes both on-site and intersite Coulomb
interactions together with Peierls-type electron-lattice couplings, we examine
the role of lattice degrees of freedom on charge order. It is found that the
experimentally observed, horizontal charge order is stabilized by lattice
distortion in both compounds. In particular, the lattice effect is crucial to
the realization of the charge order in \theta-(ET)2RbZn(SCN)4, while the
peculiar band structure whose symmetry is lower than that of
\theta-(ET)2RbZn(SCN)4 in the metallic phase is also an important factor in
\alpha-(ET)2I3 together with the lattice distortion. For \alpha-(ET)2I3, we
obtain a phase transition from a charge-disproportionated metallic phase to the
horizontal charge order with lattice modulations, which is consistent with the
latest X-ray experimental result.Comment: 10 pages, 13 figures, to appear in J. Phys. Soc. Jpn. Vol. 77 (2008)
No.
- …