405 research outputs found
Reinforcement Learning: A Survey
This paper surveys the field of reinforcement learning from a
computer-science perspective. It is written to be accessible to researchers
familiar with machine learning. Both the historical basis of the field and a
broad selection of current work are summarized. Reinforcement learning is the
problem faced by an agent that learns behavior through trial-and-error
interactions with a dynamic environment. The work described here has a
resemblance to work in psychology, but differs considerably in the details and
in the use of the word ``reinforcement.'' The paper discusses central issues of
reinforcement learning, including trading off exploration and exploitation,
establishing the foundations of the field via Markov decision theory, learning
from delayed reinforcement, constructing empirical models to accelerate
learning, making use of generalization and hierarchy, and coping with hidden
state. It concludes with a survey of some implemented systems and an assessment
of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file
Learning Symbolic Models of Stochastic Domains
In this article, we work towards the goal of developing agents that can learn
to act in complex worlds. We develop a probabilistic, relational planning rule
representation that compactly models noisy, nondeterministic action effects,
and show how such rules can be effectively learned. Through experiments in
simple planning domains and a 3D simulated blocks world with realistic physics,
we demonstrate that this learning algorithm allows agents to effectively model
world dynamics
Learning probabilistic relational planning rules
To learn to behave in highly complex domains, agents must represent and learn compact models of the world dynamics. In this paper, we present an algorithm for learning probabilistic STRIPS-like planning operators from examples. We demonstrate the effective learning of rule-based operators for a wide range of traditional planning domains
Competition in Social Networks: Emergence of a Scale-free Leadership Structure and Collective Efficiency
Using the minority game as a model for competition dynamics, we investigate
the effects of inter-agent communications on the global evolution of the
dynamics of a society characterized by competition for limited resources. The
agents communicate across a social network with small-world character that
forms the static substrate of a second network, the influence network, which is
dynamically coupled to the evolution of the game. The influence network is a
directed network, defined by the inter-agent communication links on the
substrate along which communicated information is acted upon. We show that the
influence network spontaneously develops hubs with a broad distribution of
in-degrees, defining a robust leadership structure that is scale-free.
Furthermore, in realistic parameter ranges, facilitated by information exchange
on the network, agents can generate a high degree of cooperation making the
collective almost maximally efficient.Comment: 4 pages, 2 postscript figures include
Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics
A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional
is proposed in this paper. After introducing the basic formalism, some first
applications to nuclear structure and nuclear thermodynamics are presentedComment: 5 pages, Proceedings of the French-Japanese Symposium, September
2008. To be published in Int. J. of Mod. Phys.
Self-Modification of Policy and Utility Function in Rational Agents
Any agent that is part of the environment it interacts with and has versatile
actuators (such as arms and fingers), will in principle have the ability to
self-modify -- for example by changing its own source code. As we continue to
create more and more intelligent agents, chances increase that they will learn
about this ability. The question is: will they want to use it? For example,
highly intelligent systems may find ways to change their goals to something
more easily achievable, thereby `escaping' the control of their designers. In
an important paper, Omohundro (2008) argued that goal preservation is a
fundamental drive of any intelligent system, since a goal is more likely to be
achieved if future versions of the agent strive towards the same goal. In this
paper, we formalise this argument in general reinforcement learning, and
explore situations where it fails. Our conclusion is that the self-modification
possibility is harmless if and only if the value function of the agent
anticipates the consequences of self-modifications and use the current utility
function when evaluating the future.Comment: Artificial General Intelligence (AGI) 201
Learning Users’ Interests in a Market-Based Recommender System
Recommender systems are widely used to cope with the problem of information overload and, consequently, many recommendation methods have been developed. However, no one technique is best for all users in all situations. To combat this, we have previously developed a market-based recommender system that allows multiple agents (each representing a different recommendation method or system) to compete with one another to present their best recommendations to the user. Our marketplace thus coordinates multiple recommender agents and ensures only the best recommendations are presented. To do this effectively, however, each agent needs to learn the users’ interests and adapt its recommending behaviour accordingly. To this end, in this paper, we develop a reinforcement learning and Boltzmann exploration strategy that the recommender agents can use for these tasks. We then demonstrate that this strategy helps the agents to effectively obtain information about the users’ interests which, in turn, speeds up the market convergence and enables the system to rapidly highlight the best recommendations
The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes
We study the never-worse relation (NWR) for Markov decision processes with an
infinite-horizon reachability objective. A state q is never worse than a state
p if the maximal probability of reaching the target set of states from p is at
most the same value from q, regard- less of the probabilities labelling the
transitions. Extremal-probability states, end components, and essential states
are all special cases of the equivalence relation induced by the NWR. Using the
NWR, states in the same equivalence class can be collapsed. Then, actions
leading to sub- optimal states can be removed. We show the natural decision
problem associated to computing the NWR is coNP-complete. Finally, we ex- tend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR
Evolving Symbolic Controllers
International audienceThe idea of symbolic controllers tries to bridge the gap between the top-down manual design of the controller architecture, as advocated in Brooks' subsumption architecture, and the bottom-up designer-free approach that is now standard within the Evolutionary Robotics community. The designer provides a set of elementary behavior, and evolution is given the goal of assembling them to solve complex tasks. Two experiments are presented, demonstrating the efficiency and showing the recursiveness of this approach. In particular, the sensitivity with respect to the proposed elementary behaviors, and the robustness w.r.t. generalization of the resulting controllers are studied in detail
A two step algorithm for learning from unspecific reinforcement
We study a simple learning model based on the Hebb rule to cope with
"delayed", unspecific reinforcement. In spite of the unspecific nature of the
information-feedback, convergence to asymptotically perfect generalization is
observed, with a rate depending, however, in a non- universal way on learning
parameters. Asymptotic convergence can be as fast as that of Hebbian learning,
but may be slower. Moreover, for a certain range of parameter settings, it
depends on initial conditions whether the system can reach the regime of
asymptotically perfect generalization, or rather approaches a stationary state
of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic
variant of the algorithm adde
- …