2,716 research outputs found

    Particle Acceleration by Magnetic Reconnection

    Full text link
    Observational data require a rich variety of mechanisms to accelerate fast particles in astrophysical environments operating under different conditions. The mechanisms discussed in the literature include varying magnetic fields in compact sources, stochastic processes in turbulent environments, and acceleration behind shocks. An alternative, much less explored mechanism involves particle acceleration within magnetic reconnection sites. In this chapter we discuss this mechanism and show that particles can be efficiently accelerated by reconnection through a first order Fermi process within large scale current sheets (specially when in the presence of local turbulence which speeds up the reconnection and make the acceleration region thicker) and also through a second order Fermi process in pure MHD turbulent environments.Comment: 24 pages, 8 figures. arXiv admin note: text overlap with arXiv:1103.2984, arXiv:1202.5256, arXiv:1008.1981 by other author

    The role of pressure anisotropy in the turbulent intracluster medium

    Full text link
    In low-density plasma environments, such as the intracluster medium (ICM), the Larmour frequency is much larger than the ion-ion collision frequency. In such a case, the thermal pressure becomes anisotropic with respect to the magnetic field orientation and the evolution of the turbulent gas is more correctly described by a kinetic approach. A possible description of these collisionless scenarios is given by the so-called kinetic magnetohydrodynamic (KMHD) formalism, in which particles freely stream along the field lines, while moving with the field lines in the perpendicular direction. In this way a fluid-like behavior in the perpendicular plane is restored. In this work, we study fast growing magnetic fluctuations in the smallest scales which operate in the collisionless plasma that fills the ICM. In particular, we focus on the impact of a particular evolution of the pressure anisotropy and its implications for the turbulent dynamics of observables under the conditions prevailing in the ICM. We present results from numerical simulations and compare the results which those obtained using an MHD formalism.Comment: 7 pages, 14 figures, Journal of Physics: Conference Serie
    corecore