2,518 research outputs found
Godel-Type Metrics in Various Dimensions
Godel-type metrics are introduced and used in producing charged dust
solutions in various dimensions. The key ingredient is a (D-1)-dimensional
Riemannian geometry which is then employed in constructing solutions to the
Einstein-Maxwell field equations with a dust distribution in D dimensions. The
only essential field equation in the procedure turns out to be the source-free
Maxwell's equation in the relevant background. Similarly the geodesics of this
type of metric are described by the Lorentz force equation for a charged
particle in the lower dimensional geometry. It is explicitly shown with several
examples that Godel-type metrics can be used in obtaining exact solutions to
various supergravity theories and in constructing spacetimes that contain both
closed timelike and closed null curves and that contain neither of these. Among
the solutions that can be established using non-flat backgrounds, such as the
Tangherlini metrics in (D-1)-dimensions, there exists a class which can be
interpreted as describing black-hole-type objects in a Godel-like universe.Comment: REVTeX4, 19 pp., no figures, improved and shortened version, note the
slight change in the title [accepted for publication in Classical and Quantum
Gravity
A new integrable generalization of the Korteweg - de Vries equation
A new integrable sixth-order nonlinear wave equation is discovered by means
of the Painleve analysis, which is equivalent to the Korteweg - de Vries
equation with a source. A Lax representation and a Backlund self-transformation
are found of the new equation, and its travelling wave solutions and
generalized symmetries are studied.Comment: 13 pages, 2 figure
Ermakov's Superintegrable Toy and Nonlocal Symmetries
We investigate the symmetry properties of a pair of Ermakov equations. The
system is superintegrable and yet possesses only three Lie point symmetries
with the algebra sl(2,R). The number of point symmetries is insufficient and
the algebra unsuitable for the complete specification of the system. We use the
method of reduction of order to reduce the nonlinear fourth-order system to a
third-order system comprising a linear second-order equation and a conservation
law. We obtain the representation of the complete symmetry group from this
system. Four of the required symmetries are nonlocal and the algebra is the
direct sum of a one-dimensional Abelian algebra with the semidirect sum of a
two-dimensional solvable algebra with a two-dimensional Abelian algebra. The
problem illustrates the difficulties which can arise in very elementary
systems. Our treatment demonstrates the existence of possible routes to
overcome these problems in a systematic fashion.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and
Applications) at http://www.emis.de/journals/SIGMA
Some Higher Dimensional Vacuum Solutions
We study an even dimensional manifold with a pseudo-Riemannian metric with arbitrary signature and arbitrary dimensions. We consider the Ricci flat equations and present a procedure to construct solutions to some higher (even) dimensional Ricci flat field equations from the four diemnsional Ricci flat metrics. When the four dimensional Ricci flat geometry correponds to a colliding gravitational vacuum spacetime our approach provides an exact solution to the vacuum Einstein field equations for colliding graviational plane waves in an (arbitrary) even dimensional spacetime. We give explicitly higher dimensional Szekeres metrics and study their singularity behaviors
Degenerate Svinolupov KdV systems
We find infinitely many coupled systems of KdV type equations which are integrable. We give also their recursion operators
Exact accelerating solitons in nonholonomic deformation of the KdV equation with two-fold integrable hierarchy
Recently proposed nonholonomic deformation of the KdV equation is solved
through inverse scattering method by constructing AKNS-type Lax pair. Exact and
explicit N-soliton solutions are found for the basic field and the deforming
function showing an unusual accelerated (decelerated) motion. A two-fold
integrable hierarchy is revealed, one with usual higher order dispersion and
the other with novel higher nonholonomic deformations.Comment: 7 pages, 2 figures, latex. Exact explicit exact N-soliton solutions
(through ISM) for KdV field u and deforming function w are included. Version
to be published in J. Phys.
On integrability of a (2+1)-dimensional perturbed Kdv equation
A (2+1)-dimensional perturbed KdV equation, recently introduced by W.X. Ma
and B. Fuchssteiner, is proven to pass the Painlev\'e test for integrability
well, and its 44 Lax pair with two spectral parameters is found. The
results show that the Painlev\'e classification of coupled KdV equations by A.
Karasu should be revised
Closed timelike curves and geodesics of Godel-type metrics
It is shown explicitly that when the characteristic vector field that defines
a Godel-type metric is also a Killing vector, there always exist closed
timelike or null curves in spacetimes described by such a metric. For these
geometries, the geodesic curves are also shown to be characterized by a lower
dimensional Lorentz force equation for a charged point particle in the relevant
Riemannian background. Moreover, two explicit examples are given for which
timelike and null geodesics can never be closed.Comment: REVTeX 4, 12 pages, no figures; the Introduction has been rewritten,
some minor mistakes corrected, many references adde
Closed timelike curves and geodesics of Godel-type metrics
it is shown explicitly that when the characteristic vector field that defines a Godel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower-dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed
- …