781 research outputs found
Representation of second-order polarisation mode dispersion
A new expansion for the Jones matrix of a transmission medium is used to describe high-order polarisation dispersion. Each term in the expansion is characterised by a pair of principal states and the corresponding dispersion parameters. With these descriptors, a new expression for pulse deformation is derived and confirmed by simulation
Statistical determination of the length dependence of high-order polarization mode dispersion
We describe a method of characterizing high-order polarization mode dispersion (PMD).Using a new expansion to approximate the Jones matrix of a polarization-dispersive medium, we study the length dependence of high-order PMD to the fourth order. A simple rule for the asymptotic behavior of PMD for short and long fibers is found. It is also shown that, in long fibers (~1000 km), at 40 Gbits/s the third- and fourth-order PMD may become comparable to the second-order PMD
The Influence of Quadrature Errors on Isogeometric Mortar Methods
Mortar methods have recently been shown to be well suited for isogeometric
analysis. We review the recent mathematical analysis and then investigate the
variational crime introduced by quadrature formulas for the coupling integrals.
Motivated by finite element observations, we consider a quadrature rule purely
based on the slave mesh as well as a method using quadrature rules based on the
slave mesh and on the master mesh, resulting in a non-symmetric saddle point
problem. While in the first case reduced convergence rates can be observed, in
the second case the influence of the variational crime is less significant
\u3ci\u3eIn Vitro and In Vivo\u3c/i\u3e Correlation of Skin and Cellular Responses to Nucleic Acid Delivery
Skin, the largest organ in the body, provides a passive physical barrier against infection and contains elements of the innate and adaptive immune systems. Skin consists of various cells, including keratinocytes, fibroblasts, endothelial cells and immune cells. This diversity of cell types could be important to gene therapies because DNA transfection could elicit different responses in different cell types. Previously, we observed the upregulation and activation of cytosolic DNA sensing pathways in several non-tumor and tumor cell types as well in tumors after the electroporation (electrotransfer) of plasmid DNA (pDNA). Based on this research and the innate immunogenicity of skin, we correlated the effects of pDNA electrotransfer to fibroblasts and keratinocytes to mouse skin using reverse transcription real-time PCR (RT-qPCR) and several types of protein quantification. After pDNA electrotransfer, the mRNAs of the putative DNA sensors DEAD (AspGlu-Ala-Asp) box polypeptide 60 (Ddx60), absent in melanoma 2 (Aim2), Z-DNA binding protein 1 (Zbp1), interferon activated gene 202 (Ifi202), and interferon-inducible protein 204 (Ifi204) were upregulated in keratinocytes, while Ddx60, Zbp1 and Ifi204 were upregulated in fibroblasts. Increased levels of the mRNAs and proteins of several cytokines and chemokines were detected and varied based on cell type. Mouse skin experiments in vivo confirmed our in vitro results with increased expression of putative DNA sensor mRNAs and of the mRNAs and proteins of several cytokines and chemokines. Finally, with immunofluorescent staining, we demonstrated that skin keratinocytes, fibroblasts and macrophages contribute to the immune response observed after pDNA electrotransfer
Development of an approximate method for quantum optical models and their pseudo-Hermicity
An approximate method is suggested to obtain analytical expressions for the
eigenvalues and eigenfunctions of the some quantum optical models. The method
is based on the Lie-type transformation of the Hamiltonians. In a particular
case it is demonstrated that Jahn-Teller Hamiltonian can
easily be solved within the framework of the suggested approximation. The
method presented here is conceptually simple and can easily be extended to the
other quantum optical models. We also show that for a purely imaginary coupling
the Hamiltonian becomes non-Hermitian but -symmetric. Possible generalization of this approach is outlined.Comment: Paper prepared fo the "3rd International Workshop on Pseudo-Hermitian
Hamiltonians in Quantum Physics" June 2005 Istanbul. To be published in
Czechoslovak Journal of Physic
Canonical description of ideal magnetohydrodynamic flows and integrals of motion
In the framework of the variational principle the canonical variables
describing ideal magnetohydrodynamic (MHD) flows of general type (i.e., with
spatially varying entropy and nonzero values of all topological invariants) are
introduced. The corresponding complete velocity representation enables us not
only to describe the general type flows in terms of single-valued functions,
but also to solve the intriguing problem of the ``missing'' MHD integrals of
motion. The set of hitherto known MHD local invariants and integrals of motion
appears to be incomplete: for the vanishing magnetic field it does not reduce
to the set of the conventional hydrodynamic invariants. And if the MHD analogs
of the vorticity and helicity were discussed earlier for the particular cases,
the analog of Ertel invariant has been so far unknown. It is found that on the
basis of the new invariants introduced a wide set of high-order invariants can
be constructed. The new invariants are relevant both for the deeper insight
into the problem of the topological structure of the MHD flows as a whole and
for the examination of the stability problems. The additional advantage of the
proposed approach is that it enables one to deal with discontinuous flows,
including all types of possible breaks.Comment: 16 page
An Improved Neutron Electric Dipole Moment Experiment
A new measurement of the neutron EDM, using Ramsey's method of separated
oscillatory fields, is in preparation at the new high intensity source of
ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland
(PSI). The existence of a non-zero nEDM would violate both parity and time
reversal symmetry and, given the CPT theorem, might lead to a discovery of new
CP violating mechanisms. Already the current upper limit for the nEDM
(|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model.
The new experiment aims at a two orders of magnitude reduction of the
experimental uncertainty, to be achieved mainly by (1) the higher UCN flux
provided by the new PSI source, (2) better magnetic field control with improved
magnetometry and (3) a double chamber configuration with opposite electric
field directions.
The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL
group's apparatus (which has produced the current best result) moved from
Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further
step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200
- âŠ