2,370 research outputs found
Computer programs for estimating civil aircraft economics
Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs
Threshold effects for two pathogens spreading on a network
Diseases spread through host populations over the networks of contacts
between individuals, and a number of results about this process have been
derived in recent years by exploiting connections between epidemic processes
and bond percolation on networks. Here we investigate the case of two pathogens
in a single population, which has been the subject of recent interest among
epidemiologists. We demonstrate that two pathogens competing for the same hosts
can both spread through a population only for intermediate values of the bond
occupation probability that lie above the classic epidemic threshold and below
a second higher value, which we call the coexistence threshold, corresponding
to a distinct topological phase transition in networked systems.Comment: 5 pages, 2 figure
Characteristics of reaction-diffusion on scale-free networks
We examine some characteristic properties of reaction-diffusion processes of
the A+A->0 type on scale-free networks. Due to the inhomogeneity of the
structure of the substrate, as compared to usual lattices, we focus on the
characteristics of the nodes where the annihilations occur. We show that at
early times the majority of these events take place on low-connectivity nodes,
while as time advances the process moves towards the high-connectivity nodes,
the so-called hubs. This pattern remarkably accelerates the annihilation of the
particles, and it is in agreement with earlier predictions that the rates of
reaction-diffusion processes on scale-free networks are much faster than the
equivalent ones on lattice systems
Oocyte cryopreservation as an adjunct to the assisted reproductive technologies
The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included. See page 2 of PDF for this item.Keith L Harrison, Michelle T Lane, Jeremy C Osborn, Christine A Kirby, Regan Jeffrey, John H Esler and David Mollo
Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses
UNLABELLED: Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT: The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic "push-pull" pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing
Self-avoiding walks on scale-free networks
Several kinds of walks on complex networks are currently used to analyze
search and navigation in different systems. Many analytical and computational
results are known for random walks on such networks. Self-avoiding walks (SAWs)
are expected to be more suitable than unrestricted random walks to explore
various kinds of real-life networks. Here we study long-range properties of
random SAWs on scale-free networks, characterized by a degree distribution
. In the limit of large networks (system size ), the average number of SAWs starting from a generic site
increases as , with . For finite ,
is reduced due to the presence of loops in the network, which causes the
emergence of attrition of the paths. For kinetic growth walks, the average
maximum length, , increases as a power of the system size: , with an exponent increasing as the parameter is
raised. We discuss the dependence of on the minimum allowed degree in
the network. A similar power-law dependence is found for the mean
self-intersection length of non-reversal random walks. Simulation results
support our approximate analytical calculations.Comment: 9 pages, 7 figure
Scaling of degree correlations and the influence on diffusion in scale-free networks
Connectivity correlations play an important role in the structure of
scale-free networks. While several empirical studies exist, there is no general
theoretical analysis that can explain the largely varying behavior of real
networks. Here, we use scaling theory to quantify the degree of correlations in
the particular case of networks with a power-law degree distribution. These
networks are classified in terms of their correlation properties, revealing
additional information on their structure. For instance, the studied social
networks and the Internet at the router level are clustered around the line of
random networks, implying a strongly connected core of hubs. On the contrary,
some biological networks and the WWW exhibit strong anti-correlations. The
present approach can be used to study robustness or diffusion, where we find
that anti-correlations tend to accelerate the diffusion process.Comment: 5 pages, 4 figure
Effectiveness of a social support intervention on infant feeding practices : randomised controlled trial
Background: To assess whether monthly home visits from trained volunteers could improve infant feeding practices at age 12 months, a randomised controlled trial was carried out in two disadvantaged inner city London boroughs.
Methods: Women attending baby clinics with their infants (312) were randomised to receive monthly home visits from trained volunteers over a 9-month period (intervention group) or standard professional care only (control group). The primary outcome was vitamin C intakes from fruit. Secondary outcomes included selected macro and micro-nutrients, infant feeding habits, supine length and weight. Data were collected at baseline when infants were aged approximately 10 weeks, and subsequently when the child was 12 and 18 months old.
Results: Two-hundred and twelve women (68%) completed the trial. At both follow-up points no significant differences were found between the groups for vitamin C intakes from fruit or other nutrients. At first follow-up, however, infants in the intervention group were significantly less likely to be given goats’ or soya milks, and were more likely to have three solid meals per day. At the second follow-up, intervention group children were significantly less likely to be still using a bottle. At both follow-up points, intervention group children also consumed significantly more specific fruit and vegetables.
Conclusions: Home visits from trained volunteers had no significant effect on nutrient intakes but did promote some other recommended infant feeding practices
Spin Glass Phase Transition on Scale-Free Networks
We study the Ising spin glass model on scale-free networks generated by the
static model using the replica method. Based on the replica-symmetric solution,
we derive the phase diagram consisting of the paramagnetic (P), ferromagnetic
(F), and spin glass (SG) phases as well as the Almeida-Thouless line as
functions of the degree exponent , the mean degree , and the
fraction of ferromagnetic interactions . To reflect the inhomogeneity of
vertices, we modify the magnetization and the spin glass order parameter
with vertex-weights. The transition temperature () between the
P-F (P-SG) phases and the critical behaviors of the order parameters are found
analytically. When , and are infinite, and the
system is in the F phase or the mixed phase for , while it is in the
SG phase at . and decay as power-laws with increasing
temperature with different -dependent exponents. When ,
the and are finite and related to the percolation threshold. The
critical exponents associated with and depend on for () at the P-F (P-SG) boundary.Comment: Phys. Rev. E in pres
Exact Solution for the Time Evolution of Network Rewiring Models
We consider the rewiring of a bipartite graph using a mixture of random and
preferential attachment. The full mean field equations for the degree
distribution and its generating function are given. The exact solution of these
equations for all finite parameter values at any time is found in terms of
standard functions. It is demonstrated that these solutions are an excellent
fit to numerical simulations of the model. We discuss the relationship between
our model and several others in the literature including examples of Urn,
Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem
and some models of zero range processes. Our model is also equivalent to those
used in various applications including cultural transmission, family name and
gene frequencies, glasses, and wealth distributions. Finally some Voter models
and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E
versio
- …