22,761 research outputs found

    Heat Treatment of Forgings

    Get PDF
    Ferrous materials are widely used for the manufacture of components for the engineering applications. This is because of the fact that these materials can have wide range of mechanical properties. According to requirements one can select a particular grade of iron and steel and by suitable processes shapes can be given and then by heat treatment the required physical properties can be impa-rted. Application and use of steel is much more wide than that of iron is well known, because of its improved characteristic as regards hot and cold deformation

    Electrical transport properties of nanostructured ferromagnetic perovskite oxides La_0.67Ca_0.33MnO_3 and La_0.5Sr_0.5CoO_3 at low temperatures (5 K > T >0.3 K) and high magnetic field

    Full text link
    We report a comprehensive study of the electrical and magneto-transport properties of nanocrystals of La_0.67Ca_0.33MnO_3 (LCMO) (with size down to 15 nm) and La_0.5Sr_0.5CoO_3 (LSCO) (with size down to 35 nm) in the temperature range 0.3 K to 5 K and magnetic fields upto 14 T. The transport, magnetotransport and non-linear conduction (I-V curves) were analysed using the concept of Spin Polarized Tunnelling in the presence of Coulomb blockade. The activation energy of transport, \Delta, was used to estimate the tunnelling distances and the inverse decay length of the tunnelling wave function (\chi) and the height of the tunnelling barrier (\Phi_B). The magnetotransport data were used to find out the magnetic field dependences of these tunnelling parameters. The data taken over a large magnetic field range allowed us to separate out the MR contributions at low temperatures arising from tunnelling into two distinct contributions. In LCMO, at low magnetic field, the transport and the MR are dominated by the spin polarization, while at higher magnetic field the MR arises from the lowering of the tunnel barrier by the magnetic field leading to an MR that does not saturate even at 14 T. In contrast, in LSCO, which does not have substantial spin polarization, the first contribution at low field is absent, while the second contribution related to the barrier height persists. The idea of inter-grain tunnelling has been validated by direct measurements of the non-linear I-V data in this temperature range and the I-V data was found to be strongly dependent on magnetic field. We made the important observation that a gap like feature (with magnitude ~ E_C, the Coulomb charging energy) shows up in the conductance g(V) at low bias for the systems with smallest nanocrystal size at lowest temperatures (T < 0.7 K). The gap closes as the magnetic field and the temperature are increased.Comment: 13 figure

    Structure of A=138 isobars above the 132Sn core and the N-N interaction in the neutron-rich environment

    Full text link
    Large basis untruncated shell model calculations have been done for the A=138 neutron -rich nuclei in the pi(gdsh) X nu(hfpi) valence space above the 132Sn core. Two (1+2) -body nuclear Hamiltonians, viz., realistic CWG and empirical SMPN in this model space have been used. Calculated ground state binding energies, level spectra and other spectroscopic properties have been compared with the available experimental data. Importance of untruncated shell model calculations in this model space has been pointed out. Shell model results for the very neutron rich Sn isotope (138Sn, N/Z=1.76) of astrophysical interest for which no spectroscopic information except beta -decay half life is available, have been presented. Shell structure and evolution of collectivity in the even-even A=138 isobars have been studied as a function of valence neutron and /or proton numbers. Calculations done for the first time, reproduce remarkably well the collective vibrational states in 138Te and 138Xe. Comparison of some of the important two-body matrix elements of the empirical SMPN, CW5082 and the realistic CWG interactions has been done. These matrix elements are important for ground state binding energies and low-lying spectra of nuclei in this region. Consideration of the predictability of the two interactions seems to suggest that, in order to incorporate the special features of the N-N interaction in such exotic n-rich environment above the 132Sn core, the use of local spectroscopic information from the region might be essential.Comment: 22 pages, 14 figure

    Investigation into the limits of perturbation theory at low Q^2 using HERA deep inelastic scattering data

    Get PDF
    A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q2Q^2, above 104^4 GeV2^2 down to the lowest values observable at HERA of Q2Q^2 = 0.045 GeV2^2 and Bjorken xx, xBjx_{\rm Bj} = 6 ⋅\cdot 10−7^{-7}. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q2Q^2 down to Q2Q^2 of a few GeV2^2. The Regge formalism can describe the data up to Q2≈Q^2 \approx 0.65 GeV2^2. The complete data set can be described by a new fit using the ALLM parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.Comment: 38 pages, 13 figure

    Testing gravity at the Second post-Newtonian level through gravitational deflection of massive particles

    Get PDF
    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Several of its important implications including the possibility of testing gravitational theories at that level are discussed.Comment: 5 pages, couple of equations of the previous version are correcte
    • …
    corecore