480 research outputs found
Adsorption of polyampholytes on charged surfaces
We have studied the adsorption of neutral polyampholytes on model charged
surfaces that have been characterized by contact angle and streaming current
measurements. The loop size distributions of adsorbed polymer chains have been
obtained using atomic force microscopy (AFM) and compared to recent theoretical
predictions. We find a qualitative agreement with theory; the higher the
surface charge, the smaller the number of monomers in the adsorbed layer, in
agreement with theory. We propose an original scenario for the adsorption of
polyampholytes on surfaces covered with both neutral long-chain and charged
short-chain thiols.Comment: 11 pages, 17 figures, accepted for publication in EPJ
A practical density functional for polydisperse polymers
The Flory Huggins equation of state for monodisperse polymers can be turned
into a density functional by adding a square gradient term, with a coefficient
fixed by appeal to RPA (random phase approximation). We present instead a model
nonlocal functional in which each polymer is replaced by a deterministic,
penetrable particle of known shape. This reproduces the RPA and square gradient
theories in the small deviation and/or weak gradient limits, and can readily be
extended to polydisperse chains. The utility of the new functional is shown for
the case of a polydisperse polymer solution at coexistence in a poor solvent.Comment: 9 pages, 3 figure
Surface-mediated attraction between colloids
We investigate the equilibrium properties of a colloidal solution in contact
with a soft interface. As a result of symmetry breaking, surface effects are
generally prevailing in confined colloidal systems. In this Letter, particular
emphasis is given to surface fluctuations and their consequences on the local
(re)organization of the suspension. It is shown that particles experience a
significant effective interaction in the vicinity of the interface. This
potential of mean force is always attractive, with range controlled by the
surface correlation length. We suggest that, under some circumstances,
surface-induced attraction may have a strong influence on the local particle
distribution
Undulation Instability of Epithelial Tissues
Treating the epithelium as an incompressible fluid adjacent to a viscoelastic
stroma, we find a novel hydrodynamic instability that leads to the formation of
protrusions of the epithelium into the stroma. This instability is a candidate
for epithelial fingering observed in vivo. It occurs for sufficiently large
viscosity, cell-division rate and thickness of the dividing region in the
epithelium. Our work provides physical insight into a potential mechanism by
which interfaces between epithelia and stromas undulate, and potentially by
which tissue dysplasia leads to cancerous invasion.Comment: 4 pages, 3 figure
Unusual Response to a Localized Perturbation in a Generalized Elastic Model
The generalized elastic model encompasses several physical systems such as
polymers, membranes, single file systems, fluctuating surfaces and rough
interfaces. We consider the case of an applied localized potential, namely an
external force acting only on a single (tagged) probe, leaving the rest of the
system unaffected. We derive the fractional Langevin equation for the tagged
probe, as well as for a generic (untagged) probe, where the force is not
directly applied. Within the framework of the fluctuation-dissipation
relations, we discuss the unexpected physical scenarios arising when the force
is constant and time periodic, whether or not the hydrodynamic interactions are
included in the model. For short times, in case of the constant force, we show
that the average drift is linear in time for long range hydrodynamic
interactions and behaves ballistically or exponentially for local hydrodynamic
interactions. Moreover, it can be opposite to the direction of external
disturbance for some values of the model's parameters. When the force is time
periodic, the effects are macroscopic: the system splits into two distinct
spatial regions whose size is proportional to the value of the applied
frequency. These two regions are characterized by different amplitudes and
phase shifts in the response dynamics
Structure of Polyelectrolytes in Poor Solvent
We present simulations on charged polymers in poor solvent. First we
investigate in detail the dilute concentration range with and without imposed
extension constraints. The resulting necklace polymer conformations are
analyzed in detail. We find strong fluctuations in the number of pearls and
their sizes leading only to small signatures in the form factor and the
force-extension relation. The scaling of the peak in the structure factor with
the monomer density shows a pertinent different behavior from good solvent
chains.Comment: 7 pages, 5 figures. submitted to EP
Molecular Weight Dependence of Spreading Rates of Ultrathin Polymeric Films
We study experimentally the molecular weight dependence of spreading
rates of molecularly thin precursor films, growing at the bottom of droplets of
polymer liquids. In accord with previous observations, we find that the radial
extension R(t) of the film grows with time as R(t) = (D_{exp} t)^{1/2}. Our
data substantiate the M-dependence of D_{exp}; we show that it follows D_{exp}
\sim M^{-\gamma}, where the exponent \gamma is dependent on the chemical
composition of the solid surface, determining its frictional properties with
respect to the molecular transport. In the specific case of hydrophilic
substrates, the frictional properties can be modified by the change of the
relative humidity (RH). We find that \gamma \approx 1 at low RH and tends to
zero when RH gets progressively increased. We propose simple theoretical
arguments which explain the observed behavior in the limits of low and high RH.Comment: 4 pages, 2 figures, to appear in PR
Deviations from the mean field predictions for the phase behaviour of random copolymers melts
We investigate the phase behaviour of random copolymers melts via large scale
Monte Carlo simulations. We observe macrophase separation into A and B--rich
phases as predicted by mean field theory only for systems with a very large
correlation lambda of blocks along the polymer chains, far away from the
Lifshitz point. For smaller values of lambda, we find that a locally
segregated, disordered microemulsion--like structure gradually forms as the
temperature decreases. As we increase the number of blocks in the polymers, the
region of macrophase separation further shrinks. The results of our Monte Carlo
simulation are in agreement with a Ginzburg criterium, which suggests that mean
field theory becomes worse as the number of blocks in polymers increases.Comment: 6 pages, 4 figures, Late
Pinning of a solid--liquid--vapour interface by stripes of obstacles
We use a macroscopic Hamiltonian approach to study the pinning of a
solid--liquid--vapour contact line on an array of equidistant stripes of
obstacles perpendicular to the liquid. We propose an estimate of the density of
pinning stripes for which collective pinning of the contact line happens. This
estimate is shown to be in good agreement with Langevin equation simulation of
the macroscopic Hamiltonian. Finally we introduce a 2--dimensional mean field
theory which for small strength of the pinning stripes and for small capillary
length gives an excellent description of the averaged height of the contact
line.Comment: Plain tex, 12 pages, 3 figures available upon reques
- …