59,133 research outputs found
A Bohmian approach to quantum fractals
A quantum fractal is a wavefunction with a real and an imaginary part
continuous everywhere, but differentiable nowhere. This lack of
differentiability has been used as an argument to deny the general validity of
Bohmian mechanics (and other trajectory--based approaches) in providing a
complete interpretation of quantum mechanics. Here, this assertion is overcome
by means of a formal extension of Bohmian mechanics based on a limiting
approach. Within this novel formulation, the particle dynamics is always
satisfactorily described by a well defined equation of motion. In particular,
in the case of guidance under quantum fractals, the corresponding trajectories
will also be fractal.Comment: 19 pages, 3 figures (revised version
Reply to Comment by Galapon on 'Almost-periodic time observables for bound quantum systems'
In a recent paper [1] (also at http://lanl.arxiv.org/abs/0803.3721), I made
several critical remarks on a 'Hermitian time operator' proposed by Galapon [2]
(also at http://lanl.arxiv.org/abs/quant-ph/0111061).
Galapon has correctly pointed out that remarks pertaining to 'denseness' of
the commutator domain are wrong [3]. However, the other remarks still apply,
and it is further noted that a given quantum system can be a member of this
domain only at a set of times of total measure zero.Comment: 3 page
Effects of various assumptions on the calculated liquid fraction in isentropic saturated equilibrium expansions
The saturated equilibrium expansion approximation for two phase flow often involves ideal-gas and latent-heat assumptions to simplify the solution procedure. This approach is well documented by Wegener and Mack and works best at low pressures where deviations from ideal-gas behavior are small. A thermodynamic expression for liquid mass fraction that is decoupled from the equations of fluid mechanics is used to compare the effects of the various assumptions on nitrogen-gas saturated equilibrium expansion flow starting at 8.81 atm, 2.99 atm, and 0.45 atm, which are conditions representative of transonic cryogenic wind tunnels. For the highest pressure case, the entire set of ideal-gas and latent-heat assumptions are shown to be in error by 62 percent for the values of heat capacity and latent heat. An approximation of the exact, real-gas expression is also developed using a constant, two phase isentropic expansion coefficient which results in an error of only 2 percent for the high pressure case
Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information
A rigorous lower bound is obtained for the average resolution of any estimate
of a shift parameter, such as an optical phase shift or a spatial translation.
The bound has the asymptotic form k_I/ where G is the generator of the
shift (with an arbitrary discrete or continuous spectrum), and hence
establishes a universally applicable bound of the same form as the usual
Heisenberg limit. The scaling constant k_I depends on prior information about
the shift parameter. For example, in phase sensing regimes, where the phase
shift is confined to some small interval of length L, the relative resolution
\delta\hat{\Phi}/L has the strict lower bound (2\pi e^3)^{-1/2}/,
where m is the number of probes, each with generator G_1, and entangling joint
measurements are permitted. Generalisations using other resource measures and
including noise are briefly discussed. The results rely on the derivation of
general entropic uncertainty relations for continuous observables, which are of
interest in their own right.Comment: v2:new bound added for 'ignorance respecting estimates', some
clarification
Stochastic Heisenberg limit: Optimal estimation of a fluctuating phase
The ultimate limits to estimating a fluctuating phase imposed on an optical
beam can be found using the recently derived continuous quantum Cramer-Rao
bound. For Gaussian stationary statistics, and a phase spectrum scaling
asymptotically as 1/omega^p with p>1, the minimum mean-square error in any
(single-time) phase estimate scales as N^{-2(p-1)/(p+1)}, where N is the photon
flux. This gives the usual Heisenberg limit for a constant phase (as the limit
p--> infinity) and provides a stochastic Heisenberg limit for fluctuating
phases. For p=2 (Brownian motion), this limit can be attained by phase
tracking.Comment: 5+4 pages, to appear in Physical Review Letter
Surprises in the suddenly-expanded infinite well
I study the time-evolution of a particle prepared in the ground state of an
infinite well after the latter is suddenly expanded. It turns out that the
probability density shows up quite a surprising behaviour:
for definite times, {\it plateaux} appear for which is
constant on finite intervals for . Elements of theoretical explanation are
given by analyzing the singular component of the second derivative
. Analytical closed expressions are obtained for some
specific times, which easily allow to show that, at these times, the density
organizes itself into regular patterns provided the size of the box in large
enough; more, above some critical time-dependent size, the density patterns are
independent of the expansion parameter. It is seen how the density at these
times simply results from a construction game with definite rules acting on the
pieces of the initial density.Comment: 24 pages, 14 figure
Cost-effective aperture arrays for SKA Phase 1: single or dual-band?
An important design decision for the first phase of the Square Kilometre
Array is whether the low frequency component (SKA1-low) should be implemented
as a single or dual-band aperture array; that is, using one or two antenna
element designs to observe the 70-450 MHz frequency band. This memo uses an
elementary parametric analysis to make a quantitative, first-order cost
comparison of representative implementations of a single and dual-band system,
chosen for comparable performance characteristics. A direct comparison of the
SKA1-low station costs reveals that those costs are similar, although the
uncertainties are high. The cost impact on the broader telescope system varies:
the deployment and site preparation costs are higher for the dual-band array,
but the digital signal processing costs are higher for the single-band array.
This parametric analysis also shows that a first stage of analogue tile
beamforming, as opposed to only station-level, all-digital beamforming, has the
potential to significantly reduce the cost of the SKA1-low stations. However,
tile beamforming can limit flexibility and performance, principally in terms of
reducing accessible field of view. We examine the cost impacts in the context
of scientific performance, for which the spacing and intra-station layout of
the antenna elements are important derived parameters. We discuss the
implications of the many possible intra-station signal transport and processing
architectures and consider areas where future work could improve the accuracy
of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie
Concepts of quantum non-Markovianity: a hierarchy
Markovian approximation is a widely-employed idea in descriptions of the
dynamics of open quantum systems (OQSs). Although it is usually claimed to be a
concept inspired by classical Markovianity, the term quantum Markovianity is
used inconsistently and often unrigorously in the literature. In this report we
compare the descriptions of classical stochastic processes and quantum
stochastic processes (as arising in OQSs), and show that there are inherent
differences that lead to the non-trivial problem of characterizing quantum
non-Markovianity. Rather than proposing a single definition of quantum
Markovianity, we study a host of Markov-related concepts in the quantum regime.
Some of these concepts have long been used in quantum theory, such as quantum
white noise, factorization approximation, divisibility, Lindblad master
equation, etc.. Others are first proposed in this report, including those we
call past-future independence, no (quantum) information backflow, and
composability. All of these concepts are defined under a unified framework,
which allows us to rigorously build hierarchy relations among them. With
various examples, we argue that the current most often used definitions of
quantum Markovianity in the literature do not fully capture the memoryless
property of OQSs. In fact, quantum non-Markovianity is highly
context-dependent. The results in this report, summarized as a hierarchy
figure, bring clarity to the nature of quantum non-Markovianity.Comment: Clarifications and references added; discussion of the related
classical hierarchy significantly improved. To appear in Physics Report
- …