488 research outputs found

    Theory of the critical state of low-dimensional spin glass

    Full text link
    We analyse the critical region of finite-(dd)-dimensional Ising spin glass, in particular the limit of dd closely above the lower critical dimension dd_\ell. At criticality the thermally active degrees of freedom are surfaces (of width zero) enclosing clusters of spins that may reverse with respect to their environment. The surfaces are organised in finite interacting structures. These may be called {\em protodroplets}\/, since in the off-critical limit they reduce to the Fisher and Huse droplets. This picture provides an explanation for the phenomenon of critical chaos discovered earlier. It also implies that the spin-spin and energy-energy correlation functions are multifractal and we present scaling laws that describe them. Several of our results should be verifiable in Monte Carlo studies at finite temperature in d=3d=3.Comment: RevTeX, 33 pages + 1 PostScript figure (uuencoded). Uses german.sty and an input file def.tex, joined. Three additional figures may be requested from the author

    Chaos in a Two-Dimensional Ising Spin Glass

    Full text link
    We study chaos in a two dimensional Ising spin glass by finite temperature Monte Carlo simulations. We are able to detect chaos with respect to temperature changes as well as chaos with respect to changing the bonds, and find that the chaos exponents for these two cases are equal. Our value for the exponent appears to be consistent with that obtained in studies at zero temperature.Comment: 4 pages, LaTeX, 4 postscript figures included. The analysis of the data is now done somewhat differently. The results are consistent with the chaos exponent found at zero temperature. Additional papers of PY can be obtained on-line at http://schubert.ucsc.edu/pete

    Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass

    Full text link
    The two dimensional XY spin glass is studied numerically by a finite size scaling method at T=0 in the vortex representation which allows us to compute the exact (in principle) spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase at any finite T. Our results strongly support the conjecture that both spin and chiral order have the same correlation length exponent ν2.70\nu \approx 2.70. We obtain preliminary results in 3d.Comment: 4 pages, 2 figures, revte

    Finite Temperature and Dynamical Properties of the Random Transverse-Field Ising Spin Chain

    Full text link
    We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a mapping to non-interacting fermions. We extend our earlier work, Phys. Rev. 53, 8486 (1996), to finite temperatures and to dynamical properties. Our results are consistent with the idea that there are ``Griffiths-McCoy'' singularities in the paramagnetic phase described by a continuously varying exponent z(δ)z(\delta), where δ\delta measures the deviation from criticality. There are some discrepancies between the values of z(δ)z(\delta) obtained from different quantities, but this may be due to corrections to scaling. The average on-site time dependent correlation function decays with a power law in the paramagnetic phase, namely τ1/z(δ)\tau^{-1/z(\delta)}, where τ\tau is imaginary time. However, the typical value decays with a stretched exponential behavior, exp(cτ1/μ)\exp(-c\tau^{1/\mu}), where μ\mu may be related to z(δ)z(\delta). We also obtain results for the full probability distribution of time dependent correlation functions at different points in the paramagnetic phase.Comment: 10 pages, 14 postscript files included. The discussion of the typical time dependent correlation function has been greatly expanded. Other papers of APY are available on-line at http://schubert.ucsc.edu/pete

    Numerical Study of Order in a Gauge Glass Model

    Full text link
    The XY model with quenched random phase shifts is studied by a T=0 finite size defect energy scaling method in 2d and 3d. The defect energy is defined by a change in the boundary conditions from those compatible with the true ground state configuration for a given realization of disorder. A numerical technique, which is exact in principle, is used to evaluate this energy and to estimate the stiffness exponent θ\theta. This method gives θ=0.36±0.013\theta = -0.36\pm0.013 in 2d and θ=+0.31±0.015\theta = +0.31\pm 0.015 in 3d, which are considerably larger than previous estimates, strongly suggesting that the lower critical dimension is less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let

    Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice

    Full text link
    The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nature of the quantum Griffiths phase at zero temperature is investigated by calculating the distribution of the local zero-frequency susceptibility. It is pointed out that the nature of the Griffiths phase is different for small and large Gamma.Comment: 21 LaTeX (JPSJ macros included), 12 eps-figures include

    Quantum Spin Glasses

    Full text link
    Ising spin glasses in a transverse field exhibit a zero temperature quantum phase transition, which is driven by quantum rather than thermal fluctuations. They constitute a universality class that is significantly different from the classical, thermal phase transitions. Most interestingly close to the transition in finite dimensions a quantum Griffiths phase leads to drastic consequences for various physical quantities: for instance diverging magnetic susceptibilities are observable over a whole range of transverse field values in the disordered phase.Comment: 10 pages LaTeX (Springer Lecture Notes style file included), 1 eps-figure; Review article for XIV Sitges Conference: Complex Behavior of Glassy System

    Short-Range Ising Spin Glass: Multifractal Properties

    Full text link
    The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin glass model on d=3 diamond hierarchical lattices is studied via an exact recursion procedure. The profiles of the local order parameter are calculated and analysed within a range of temperatures close to the critical point with four symmetric distributions of the coupling constants (Gaussian, Bimodal, Uniform and Exponential). Unlike the pure case, the multifractal analysis of these profiles reveals that a large spectrum of the α\alpha -H\"older exponent is required to describe the singularities of the measure defined by the normalized local order parameter, at and below the critical point. Minor changes in these spectra are observed for distinct initial distributions of coupling constants, suggesting an universal spectra behavior. For temperatures slightly above T_{c}, a dramatic change in the F(α)F(\alpha) function is found, signalizing the transition.Comment: 8 pages, LaTex, PostScript-figures included but also available upon request. To be published in Physical Review E (01/March 97
    corecore