1,671 research outputs found

    The dynamics of vortices on S^2 near the Bradlow limit

    Get PDF
    The explicit solutions of the Bogomolny equations for N vortices on a sphere of radius R^2 > N are not known. In particular, this has prevented the use of the geodesic approximation to describe the low energy vortex dynamics. In this paper we introduce an approximate general solution of the equations, valid for R^2 close to N, which has many properties of the true solutions, including the same moduli space CP^N. Within the framework of the geodesic approximation, the metric on the moduli space is then computed to be proportional to the Fubini- Study metric, which leads to a complete description of the particle dynamics.Comment: 17 pages, 9 figure

    Monopole Planets and Galaxies

    Full text link
    Spherical clusters of SU(2) BPS monopoles are investigated here. A large class of monopole solutions is found using an abelian approximation, where the clusters are spherically symmetric, although exact solutions cannot have this symmetry precisely. Monopole clusters generalise the Bolognesi magnetic bag solution of the same charge, but they are always larger. Selected density profiles give structures analogous to planets of uniform density, and galaxies with a density decaying as the inverse square of the distance from the centre. The Bolognesi bag itself has features analogous to a black hole, and this analogy between monopole clusters and astrophysical objects with or without black holes in their central region is developed further. It is also shown that certain exact, platonic monopoles of small charge have sizes and other features consistent with what is expected for magnetic bags.Comment: 23 pages. Revised version to appear in Physical Review D. New introduction and conclusions; analogy between monopoles and astrophysical objects developed furthe

    The interaction energy of well-separated Skyrme solitons

    Get PDF
    We prove that the asymptotic field of a Skyrme soliton of any degree has a non-trivial multipole expansion. It follows that every Skyrme soliton has a well-defined leading multipole moment. We derive an expression for the linear interaction energy of well-separated Skyrme solitons in terms of their leading multipole moments. This expression can always be made negative by suitable rotations of one of the Skyrme solitons in space and iso-space.We show that the linear interaction energy dominates for large separation if the orders of the Skyrme solitons' multipole moments differ by at most two. In that case there are therefore always attractive forces between the Skyrme solitons.Comment: 27 pages amslate

    Symetric Monopoles

    Full text link
    We discuss SU(2)SU(2) Bogomolny monopoles of arbitrary charge kk invariant under various symmetry groups. The analysis is largely in terms of the spectral curves, the rational maps, and the Nahm equations associated with monopoles. We consider monopoles invariant under inversion in a plane, monopoles with cyclic symmetry, and monopoles having the symmetry of a regular solid. We introduce the notion of a strongly centred monopole and show that the space of such monopoles is a geodesic submanifold of the monopole moduli space. By solving Nahm's equations we prove the existence of a tetrahedrally symmetric monopole of charge 33 and an octahedrally symmetric monopole of charge 44, and determine their spectral curves. Using the geodesic approximation to analyse the scattering of monopoles with cyclic symmetry, we discover a novel type of non-planar kk-monopole scattering process

    On the constraints defining BPS monopoles

    Get PDF
    We discuss the explicit formulation of the transcendental constraints defining spectral curves of SU(2) BPS monopoles in the twistor approach of Hitchin, following Ercolani and Sinha. We obtain an improved version of the Ercolani-Sinha constraints, and show that the Corrigan-Goddard conditions for constructing monopoles of arbitrary charge can be regarded as a special case of these. As an application, we study the spectral curve of the tetrahedrally symmetric 3-monopole, an example where the Corrigan-Goddard conditions need to be modified. A particular 1-cycle on the spectral curve plays an important role in our analysis.Comment: 29 pages, 7 eps figure

    Magnetic bubble refraction and quasibreathers in inhomogeneous antiferromagnets

    Full text link
    The dynamics of magnetic bubble solitons in a two-dimensional isotropic antiferromagnetic spin lattice is studied, in the case where the exchange integral J(x,y) is position dependent. In the near continuum regime, this system is described by the relativistic O(3) sigma model on a spacetime with a spatially inhomogeneous metric, determined by J. The geodesic approximation is used to describe low energy soliton dynamics in this system: n-soliton motion is approximated by geodesic motion in the moduli space of static n-solitons, equipped with the L^2 metric. Explicit formulae for this metric for various natural choices of J(x,y) are obtained. From these it is shown that single soliton trajectories experience refraction, with 1/J analogous to the refractive index, and that this refraction effect allows the construction of simple bubble lenses and bubble guides. The case where J has a disk inhomogeneity (taking the value J_1 outside a disk, and J_2<J_1 inside) is considered in detail. It is argued that, for sufficiently large J_1/J_2 this type of antiferromagnet supports approximate quasibreathers: two or more coincident bubbles confined within the disk which spin internally while their shape undergoes periodic oscillations with a generically incommensurate period.Comment: Conference proceedings paper for talk given at Nonlinear Physics Theory and Experiment IV, Gallipoli, Italy, June 200

    Electrically Charged Sphalerons

    Get PDF
    We investigate the possibility that the Higgs sector of the Weinberg-Salam model admits the existence of electrically charged, sphaleron states. Evidence is provided through an asymptotic and numerical perturbative analysis about the uncharged sphaleron. By introducing a toy model in two dimensions we demonstrate that such electrically charged, unstable states can exist. Crucially, they can have a comparable mass to their uncharged counterparts and so may also play a role in electroweak baryogenesis, by opening up new channels for baryon number violating processes.Comment: 12 pages, 4 Postscript figure

    Kink dynamics in a novel discrete sine-Gordon system

    Full text link
    A spatially-discrete sine-Gordon system with some novel features is described. There is a topological or Bogomol'nyi lower bound on the energy of a kink, and an explicit static kink which saturates this bound. There is no Peierls potential barrier, and consequently the motion of a kink is simpler, especially at low speeds. At higher speeds, it radiates and slows down.Comment: 10 pages, 7 figures, archivin

    Asymptotic Interactions of Critically Coupled Vortices

    Full text link
    At critical coupling, the interactions of Ginzburg-Landau vortices are determined by the metric on the moduli space of static solutions. The asymptotic form of the metric for two well separated vortices is shown here to be expressible in terms of a Bessel function. A straightforward extension gives the metric for N vortices. The asymptotic metric is also shown to follow from a physical model, where each vortex is treated as a point-like particle carrying a scalar charge and a magnetic dipole moment of the same magnitude. The geodesic motion of two well separated vortices is investigated, and the asymptotic dependence of the scattering angle on the impact parameter is determined. Formulae for the asymptotic Ricci and scalar curvatures of the N-vortex moduli space are also obtained.Comment: 23 pages, 1 figure; some references and a discussion of asymptotic curvature properties adde

    The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

    Get PDF
    The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol'nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact K\"ahler domain and target. We go on to prove a continuity property for our result, and show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n>1. We also prove that, within the geodesic approximation, a single CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded discussion of the main function spac
    corecore