156 research outputs found
The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
We consider an "elastic" version of the statistical mechanical monomer-dimer
problem on the n-dimensional integer lattice. Our setting includes the
classical "rigid" formulation as a special case and extends it by allowing each
dimer to consist of particles at arbitrarily distant sites of the lattice, with
the energy of interaction between the particles in a dimer depending on their
relative position. We reduce the free energy of the elastic dimer-monomer (EDM)
system per lattice site in the thermodynamic limit to the moment Lyapunov
exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value
and covariance function are the Boltzmann factors associated with the monomer
energy and dimer potential. In particular, the classical monomer-dimer problem
becomes related to the MLE of a moving average GRF. We outline an approach to
recursive computation of the partition function for "Manhattan" EDM systems
where the dimer potential is a weighted l1-distance and the auxiliary GRF is a
Markov random field of Pickard type which behaves in space like autoregressive
processes do in time. For one-dimensional Manhattan EDM systems, we compute the
MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a
compact transfer operator on a Hilbert space which is related to the
annihilation and creation operators of the quantum harmonic oscillator and also
recast it as the eigenvalue problem for a pantograph functional-differential
equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue
of DCDS-
Bounds on the heat kernel of the Schroedinger operator in a random electromagnetic field
We obtain lower and upper bounds on the heat kernel and Green functions of
the Schroedinger operator in a random Gaussian magnetic field and a fixed
scalar potential. We apply stochastic Feynman-Kac representation, diamagnetic
upper bounds and the Jensen inequality for the lower bound. We show that if the
covariance of the electromagnetic (vector) potential is increasing at large
distances then the lower bound is decreasing exponentially fast for large
distances and a large time.Comment: some technical improvements, new references, to appear in
Journ.Phys.
Financial correlations at ultra-high frequency: theoretical models and empirical estimation
A detailed analysis of correlation between stock returns at high frequency is
compared with simple models of random walks. We focus in particular on the
dependence of correlations on time scales - the so-called Epps effect. This
provides a characterization of stochastic models of stock price returns which
is appropriate at very high frequency.Comment: 22 pages, 8 figures, 1 table, version to appear in EPJ
Structural and Electronic Properties of Small Neutral (MgO)n Clusters
Ab initio Perturbed Ion (PI) calculations are reported for neutral
stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures
was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full
geometrical relaxation was considered. Correlation corrections were included
for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by
Clementi. The results obtained compare favorably to the experimental data and
other previous theoretical studies. Inclusion of correlaiotn is crucial in
order to achieve a good description of these systems. We find an important
number of new isomers which allows us to interpret the experimental magic
numbers without the assumption of structures based on (MgO)3 subunits. Finally,
as an electronic property, the variations in the cluster ionization potential
with the cluster size were studied and related to the structural isomer
properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in
Phys. Rev.
On the relation between standard and -symmetries for PDEs
We give a geometrical interpretation of the notion of -prolongations of
vector fields and of the related concept of -symmetry for partial
differential equations (extending to PDEs the notion of -symmetry for
ODEs). We give in particular a result concerning the relationship between
-symmetries and standard exact symmetries. The notion is also extended to
the case of conditional and partial symmetries, and we analyze the relation
between local -symmetries and nonlocal standard symmetries.Comment: 25 pages, no figures, latex. to be published in J. Phys.
Brownian Motions on Metric Graphs
Brownian motions on a metric graph are defined. Their generators are
characterized as Laplace operators subject to Wentzell boundary at every
vertex. Conversely, given a set of Wentzell boundary conditions at the vertices
of a metric graph, a Brownian motion is constructed pathwise on this graph so
that its generator satisfies the given boundary conditions.Comment: 43 pages, 7 figures. 2nd revision of our article 1102.4937: The
introduction has been modified, several references were added. This article
will appear in the special issue of Journal of Mathematical Physics
celebrating Elliott Lieb's 80th birthda
Matrix valued Brownian motion and a paper by Polya
We give a geometric description of the motion of eigenvalues of a Brownian
motion with values in some matrix spaces. In the second part we consider a
paper by Polya where he introduced a function close to the Riemann zeta
function, which satisfies Riemann hypothesis. We show that each of these two
functions can be related to Brownian motion on a symmetric space
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
Recommended from our members
A quasi-sure non-degeneracy property for the Brownian rough path
In the present paper, we are going to show that outside a slim set in the sense of Malliavin (or quasi-surely), the signature path (which consists of iterated path integrals in every degree) of Brownian motion is non-selfintersecting.
This property relates closely to a non-degeneracy property
for the Brownian rough path arising naturally from the uniqueness of signature problem in rough path theory. As an important consequence we conclude that quasi-surely, the Brownian rough path does not have any tree-like pieces and every sample path of Brownian motion is uniquely determined by its signature up to reparametrization
Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations
Based on a recent result on linking stochastic differential equations on â d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval
- âŠ