5,090 research outputs found
Experimental Limits on Primordial Black Hole Dark Matter from the First Two Years of Kepler Data
We present the analysis on our new limits of the dark matter (DM) halo
consisting of primordial black holes (PBHs) or massive compact halo objects
(MACHOs). We present a search of the first two years of publicly available
Kepler mission data for potential signatures of gravitational microlensing
caused by these objects, as well as an extensive analysis of the astrophysical
sources of background error. These include variable stars, flare events, and
comets or asteroids which are moving through the Kepler field. We discuss the
potential of detecting comets using the Kepler lightcurves, presenting
measurements of two known comets and one unidentified object, most likely an
asteroid or comet. After removing the background events with statistical cuts,
we find no microlensing candidates. We therefore present our Monte Carlo
efficiency calculation in order to constrain the PBH DM with masses in the
range of 2 x 10^-9 solar masses to 10^-7 solar masses. We find that PBHs in
this mass range cannot make up the entirety of the DM, thus closing a full
order of magnitude in the allowed mass range for PBH DM.Comment: 12 pages, 6 figure
FUSE Observations of the Magellanic Bridge Gas toward Two Early-Type Stars: Molecules, Physical Conditions, and Relative Abundance
We discuss FUSE observations of two early-type stars, DI1388 and DGIK975, in
the low density and low metallicity gas of Magellanic Bridge (MB). Toward
DI1388, the FUSE observations show molecular hydrogen, O VI, and numerous other
atomic or ionic transitions in absorption, implying the presence of multiple
gas phases in a complex arrangement. The relative abundance pattern in the MB
is attributed to varying degrees of depletion onto dust similar to that of halo
clouds. The N/O ratio is near solar, much higher than N/O in damped Ly-alpha
systems, implying subsequent stellar processing to explain the origin of
nitrogen in the MB. The diffuse molecular cloud in this direction has a low
column density and low molecular fraction. H2 is observed in both the
Magellanic Stream and the MB, yet massive stars form only in the MB, implying
significantly different physical processes between them. In the MB some of the
H2 could have been pulled out from the SMC via tidal interaction, but some also
could have formed in situ in dense clouds where star formation might have taken
place. Toward DGIK975, the presence of neutral, weakly and highly ionized
species suggest that this sight line has also several complex gas phases. The
highly ionized species of O VI, C IV, and Si IV toward both stars have very
broad features, indicating that multiple components of hot gas at different
velocities are present. Several sources (a combination of turbulent mixing
layer, conductive heating, and cooling flows) may be contributing to the
production of the highly ionized gas in the MB. Finally, this study has
confirmed previous results that the high-velocity cloud HVC 291.5-41.2+80 is
mainly ionized composed of weakly and highly ions. The high ion ratios are
consistent with a radiatively cooling gas in a fountain flow model.Comment: Accepted for publication in the ApJ (October 10, 2002). Added
reference (Gibson et al. 2000
Matching factors for Delta S=1 four-quark operators in RI/SMOM schemes
The non-perturbative renormalization of four-quark operators plays a
significant role in lattice studies of flavor physics. For this purpose, we
define regularization-independent symmetric momentum-subtraction (RI/SMOM)
schemes for Delta S=1 flavor-changing four-quark operators and provide one-loop
matching factors to the MS-bar scheme in naive dimensional regularization. The
mixing of two-quark operators is discussed in terms of two different classes of
schemes. We provide a compact expression for the finite one-loop amplitudes
which allows for a straightforward definition of further RI/SMOM schemes.Comment: 22 pages, 5 figure
On characteristic initial data for a star orbiting a black hole
We take further steps in the development of the characteristic approach to
enable handling the physical problem of a compact self-gravitating object, such
as a neutron star, in close orbit around a black hole. We examine different
options for setting the initial data for this problem and, in order to shed
light on their physical relevance, we carry out short time evolution of this
data. To this end we express the matter part of the characteristic gravity code
so that the hydrodynamics are in conservation form. The resulting gravity plus
matter relativity code provides a starting point for more refined future
efforts at longer term evolution. In the present work we find that,
independently of the details of the initial gravitational data, the system
quickly flushes out spurious gravitational radiation and relaxes to a
quasi-equilibrium state with an approximate helical symmetry corresponding to
the circular orbit of the star.Comment: 20 pages, 10 figure
Relativistic MHD and black hole excision: Formulation and initial tests
A new algorithm for solving the general relativistic MHD equations is
described in this paper. We design our scheme to incorporate black hole
excision with smooth boundaries, and to simplify solving the combined Einstein
and MHD equations with AMR. The fluid equations are solved using a finite
difference Convex ENO method. Excision is implemented using overlapping grids.
Elliptic and hyperbolic divergence cleaning techniques allow for maximum
flexibility in choosing coordinate systems, and we compare both methods for a
standard problem. Numerical results of standard test problems are presented in
two-dimensional flat space using excision, overlapping grids, and elliptic and
hyperbolic divergence cleaning.Comment: 22 pages, 8 figure
What Has the Study of the K3 and K5 Viral Ubiquitin E3 Ligases Taught Us about Ubiquitin-Mediated Receptor Regulation?
Cells communicate with each other and the outside world through surface receptors, which need to be tightly regulated to prevent both overstimulation and receptor desensitization. Understanding the processes involved in the homeostatic control of cell surface receptors is essential, but we are not alone in trying to regulate these receptors. Viruses, as the ultimate host pathogens, have co-evolved over millions of years and have both pirated and adapted host genes to enable viral pathogenesis. K3 and K5 (also known as MIR1 and MIR2) are viral ubiquitin E3 ligases from Kaposi’s Sarcoma Associated Herpesvirus (KSHV) which decrease expression of a number of cell surface receptors and have been used to interrogate cellular processes and improve our understanding of ubiquitin-mediated receptor endocytosis and degradation. In this review, we summarize what has been learned from the study of these viral genes and emphasize their role in elucidating the complexity of ubiquitin in receptor regulation
Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter
If the Dark Matter consists of primordial black holes (PBHs), we show that
gravitational lensing of stars being monitored by NASA's Kepler search for
extra-solar planets can cause significant numbers of detectable microlensing
events. A search through the roughly 150,000 lightcurves would result in large
numbers of detectable events for PBHs in the mass range 5 \ten{-10}\msun to
\aten{-4}\msun. Non-detection of these events would close almost two orders
of magnitude of the mass window for PBH dark matter. The microlensing rate is
higher than previously noticed due to a combination of the exceptional
photometric precision of the Kepler mission and the increase in cross section
due to the large angular sizes of the relatively nearby Kepler field stars. We
also present a new formalism for calculating optical depth and microlensing
rates in the presence of large finite-source effects.Comment: 5 pages, 1 figur
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
The DRIFT Project: Searching for WIMPS with a Directional Detector
A low pressure time projection chamber for the detection of WIMPs is
discussed. Discrimination against Compton electron background in such a device
should be very good, and directional information about the recoil atoms would
be obtainable. If a full 3-D reconstruction of the recoil tracks can be
achieved, Monte Carlo studies indicate that a WIMP signal could be identified
with high confidence from as few as 30 detected WIMP-nucleus scattering events.Comment: 5 pages, 3 figures. Presented at Dark 98, Heidelberg, July 1998, and
to appear in conference proceeding
- …