9,749 research outputs found
Meson-Exchange Currents and the Strangeness Radius of 4he
Meson-exchange current contributions to the strangeness radius of He are
computed in the one-boson exchange approximation. It is found that these
contributions introduce a \lapp10\% correction to the one-body contribution.
They should not, therefore, hamper the extraction of the nucleon strangeness
radius from the parity-violating electron-He asymmetry.Comment: 9 tex pages and 2 figures (not included, available from authors on
request), CEBAF Preprint #TH-93-16 and MIT Preprint CTP#223
Final-State Interactions in the Superscaling Analysis of Neutral-Current Quasielastic Neutrino Scattering
Effects of strong final-state interactions in the superscaling properties of
neutral-current quasielastic neutrino cross sections are investigated using the
Relativistic Impulse Approximation as guidance. First- and second-kind scaling
are analyzed for neutrino beam energies ranging from 1 to 2 GeV for the cases
of 12C, 16O and 40Ca. Different detection angles of the outgoing nucleon are
considered in order to sample various nucleon energy regimes. Scaling of the
second kind is shown to be very robust. Validity of first-kind scaling is found
to be linked to the kinematics of the process. Superscaling still prevails even
in the presence of very strong final-state interactions, provided that some
kinematical restrains are kept, and the conditions under which superscaling can
be applied to predict neutral-current quasielastic neutrino scattering are
determined.Comment: 39 pages, 16 figures, accepted for publication in Phys. Rev.
Relativistic Models for Quasi-Elastic Neutrino-Nucleus Scattering
Two relativistic approaches to charged-current quasielastic neutrino-nucleus
scattering are illustrated and compared: one is phenomenological and based on
the superscaling behavior of electron scattering data and the other relies on
the microscopic description of nuclear dynamics in relativistic mean field
theory. The role of meson exchange currents in the two-particle two-hole sector
is explored. The predictions of the models for differential and total cross
sections are presented and compared with the MiniBooNE data.Comment: 3 pages, 3 figures, Proceedings of PANIC 2011, MIT, Cambridge, MA,
July 201
Coherence vortices in one spatial dimension
Coherence vortices are screw-type topological defects in the phase of
Glauber's two-point degree of quantum coherence, associated with pairs of
spatial points at which an ensemble-averaged stochastic quantum field is
uncorrelated. Coherence vortices may be present in systems whose dimensionality
is too low to support spatial vortices. We exhibit lattices of such
quantum-coherence phase defects for a one-dimensional model quantum system. We
discuss the physical meaning of coherence vortices and propose how they may be
realized experimentally.Comment: 5 pages, 3 figure
Quasielastic Charged Current Neutrino-nucleus Scattering
We provide integrated cross sections for quasielastic charged-current
neutrino-nucleus scattering. Results evaluated using the phenomenological
scaling function extracted from the analysis of experimental data are
compared with those obtained within the framework of the relativistic impulse
approximation. We show that very reasonable agreement is reached when a
description of final-state interactions based on the relativistic mean field is
included. This is consistent with previous studies of differential cross
sections which are in accord with the universality property of the superscaling
function.Comment: 5 pages, 3 figures, to be published in Phys. Rev. Let
Dipolar condensates confined in a toroidal trap: ground state and vortices
We study a Bose-Einstein condensate of 52Cr atoms confined in a toroidal trap
with a variable strength of s-wave contact interactions. We analyze the effects
of the anisotropic nature of the dipolar interaction by considering the
magnetization axis to be perpendicular to the trap symmetry axis. In the
absence of a central repulsive barrier, when the trap is purely harmonic, the
effect of reducing the scattering length is a tuning of the geometry of the
system: from a pancake-shaped condensate when it is large, to a cigar-shaped
condensate for small scattering lengths. For a condensate in a toroidal trap,
the interaction in combination with the central repulsive Gaussian barrier
produces an azimuthal dependence of the particle density for a fixed radial
distance. We find that along the magnetization direction the density decreases
as the scattering length is reduced but presents two symmetric density peaks in
the perpendicular axis. For even lower values of the scattering length we
observe that the system undergoes a dipolar-induced symmetry breaking
phenomenon. The whole density becomes concentrated in one of the peaks,
resembling an origin-displaced cigar-shaped condensate. In this context we also
analyze stationary vortex states and their associated velocity field, finding
that this latter also shows a strong azimuthal dependence for small scattering
lengths. The expectation value of the angular momentum along the z direction
provides a qualitative measure of the difference between the velocity in the
different density peaks.Comment: 9 pages, 12 figure
Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering
The application of superscaling ideas to predict neutral-current (NC)
quasielastic (QE) neutrino cross sections is investigated. Results obtained
within the relativistic impulse approximation (RIA) using the same relativistic
mean field potential (RMF) for both initial and final nucleons -- a model that
reproduces the experimental (e,e') scaling function -- are used to illustrate
the ideas involved. While NC reactions are not so well suited for scaling
analyses, to a large extent the RIA-RMF predictions do exhibit superscaling.
Independence of the scaled response on the nuclear species is very well
fulfilled. The RIA-RMF NC superscaling function is in good agreement with the
experimental (e,e') one. The idea that electroweak processes can be described
with a universal scaling function, provided that mild restrictions on the
kinematics are assumed, is shown to be valid.Comment: 4 pages, 4 figures, published in PR
Friction factors for smooth pipe flow
Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000
- …