20,054 research outputs found

    Spectropolarimetric analysis of an active region filament. I. Magnetic and dynamical properties from single component inversions

    Full text link
    The determination of the magnetic filed vector in solar filaments is possible by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral lines like those of the He I multiplet at 10830 A. We study the vector magnetic field of an active region filament (NOAA 12087). Spectropolarimetric data of this active region was acquired with the GRIS instrument at the GREGOR telescope and studied simultaneously in the chromosphere with the He I 10830 A multiplet and in the photosphere with the Si I 10827 A line. As it is usual from previous studies, only a single component model is used to infer the magnetic properties of the filament. The results are put into a solar context with the help of the Solar Dynamic Observatory images. Some results clearly point out that a more complex inversion had to be done. Firstly, the Stokes VV map of He I does not show any clear signature of the presence of the filament. Secondly, the local azimuth map follows the same pattern than Stokes VV as if the polarity of Stokes VV were conditioning the inference to very different magnetic field even with similar linear polarization signals. This indication suggests that the Stokes VV could be dominated by the below magnetic field coming from the active region, and not, from the filament itself. Those and more evidences will be analyzed in depth and a more complex inversion will be attempted in the second part of this series.Comment: 18 pages, 19 figures, accepted for publication in A&

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop
    • …
    corecore