16,284 research outputs found

    An Experimental Investigation of Colonel Blotto Games

    Get PDF
    This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a battlefield is deterministic, disadvantaged players use a “guerilla warfare” strategy which stochastically allocates zero resources to a subset of battlefields. Advantaged players employ a “stochastic complete coverage” strategy, allocating random, but positive, resource levels across the battlefields. In the lottery treatment, where winning a battlefield is probabilistic, both players divide their resources equally across all battlefields.Colonel Blotto, conflict resolution, contest theory, multi-dimensional resource allocation, rent-seeking, experiments

    Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions

    Full text link
    The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure

    Comment on "Four-body charge transfer processes in proton--helium collisions"

    Full text link
    We found, within the plane-wave first Born approximation (PWFBA), that the proton-helium fully differential cross section (FDCS) for transfer excitation agrees well with the experimental one at the proton energy Ep = 300 keV and small scattering angles both in shape and in magnitude. This result is in a contradiction with that obtained in [1].Comment: 4 pages, 2 figure

    Theoretical investigation of the evolution of the topological phase of Bi2_{2}Se3_{3} under mechanical strain

    Full text link
    The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi2_2Se3_3, this inversion occurs at the Γ\Gamma point. For bulk Bi2_2Se3_3, we have analyzed the effect of arbitrary strain on the Γ\Gamma point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi2_2Te3_3 supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution

    Entanglement Entropy Near Kondo-Destruction Quantum Critical Points

    Full text link
    We study the impurity entanglement entropy SeS_e in quantum impurity models that feature a Kondo-destruction quantum critical point (QCP) arising from a pseudogap in the conduction-band density of states or from coupling to a bosonic bath. On the local-moment (Kondo-destroyed) side of the QCP, the entanglement entropy contains a critical component that can be related to the order parameter characterizing the quantum phase transition. In Kondo models describing a spin-\Simp, SeS_e assumes its maximal value of \ln(2\Simp+1) at the QCP and throughout the Kondo phase, independent of features such as particle-hole symmetry and under- or over-screening. In Anderson models, SeS_e is nonuniversal at the QCP, and at particle-hole symmetry, rises monotonically on passage from the local-moment phase to the Kondo phase; breaking this symmetry can lead to a cusp peak in SeS_e due to a divergent charge susceptibility at the QCP. Implications of these results for quantum critical systems and quantum dots are discussed.Comment: 15 pages, 8 figures, replaced with published version, Editor's Suggestio

    Intra-cellular transport of single-headed molecular motors KIF1A

    Full text link
    Motivated by experiments on single-headed kinesin KIF1A, we develop a model of intra-cellular transport by interacting molecular motors. It captures explicitly not only the effects of ATP hydrolysis, but also the ratchet mechanism which drives individual motors. Our model accounts for the experimentally observed single molecule properties in the low density limit and also predicts a phase diagram that shows the influence of hydrolysis and Langmuir kinetics on the collective spatio-temporal organization of the motors. Finally, we provide experimental evidence for the existence of domain walls in our {\it in-vitro} experiment with fluorescently labeled KIF1A.Comment: 4 pages, REVTEX, 5 EPS figures; Accepted for Publication in Phys. Rev. Let

    Weakly coupled, antiparallel, totally asymmetric simple exclusion processes

    Full text link
    We study a system composed of two parallel totally asymmetric simple exclusion processes with open boundaries, where the particles move in the two lanes in opposite directions and are allowed to jump to the other lane with rates inversely proportional to the length of the system. Stationary density profiles are determined and the phase diagram of the model is constructed in the hydrodynamic limit, by solving the differential equations describing the steady state of the system, analytically for vanishing total current and numerically for nonzero total current. The system possesses phases with a localized shock in the density profile in one of the lanes, similarly to exclusion processes endowed with nonconserving kinetics in the bulk. Besides, the system undergoes a discontinuous phase transition, where coherently moving delocalized shocks emerge in both lanes and the fluctuation of the global density is described by an unbiased random walk. This phenomenon is analogous to the phase coexistence observed at the coexistence line of the totally asymmetric simple exclusion process, however, as a consequence of the interaction between lanes, the density profiles are deformed and in the case of asymmetric lane change, the motion of the shocks is confined to a limited domain.Comment: 14 pages, 15 figures, to appear in Phys. Rev.
    • …
    corecore