728 research outputs found
KLEIN: A New Family of Lightweight Block Ciphers
Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
Theory of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors
The mixed phase of extremely type-II layered superconductors in perpendicular
magnetic field is studied theoretically via the layered XY model with uniform
frustration. A partial duality analysis is carried out in the weak-coupling
limit. It consistently accounts for both intra-layer (pancake) and inter-layer
(Josephson) vortex excitations. The main conclusion reached is that
dislocations of the two-dimensional (2D) vortex lattices within layers drive a
unique second-order melting transition at high perpendicular fields between a
low-temperature superconducting phase that displays a Josephson effect and a
high-temperature ``normal'' phase that displays no Josephson effect. The former
state is best described by weakly coupled 2D vortex lattices, while the latter
state is best characterized by a decoupled vortex liquid. It is further argued
on the basis of the duality analysis that the second-order melting transition
converts itself into a first-order one as the perpendicular field is lowered
and approaches the dimensional cross-over scale. The resulting critical
endpoint potentially accounts for the same phenomenon that is observed in the
mixed phase of clean high-temperature superconductors.Comment: 39 pgs. of PLAIN TeX, 2 postscript figs., published versio
Leukocyte Counts, Myeloperoxidase, and Pregnancy-Associated Plasma Protein A as Biomarkers for Cardiovascular Disease: Towards a Multi-Biomarker Approach
We evaluated leukocyte counts and levels of CRP, fibrinogen, MPO, and PAPP-A in patients with stable and unstable angina pectoris, acute myocardial infarction, and healthy controls. All biomarkers were analyzed again after 6 months. Leukocyte counts and concentrations of fibrinogen, CRP, MPO, and PAPP-A were significantly increased in patients with acute myocardial infarction. Leukocyte counts and concentrations of MPO were significantly increased in patients with unstable angina pectoris compared with controls. After 6 months, leukocyte counts and MPO concentrations were still increased in patients with acute myocardial infarction when compared to controls. Discriminant analysis showed that leukocyte counts, MPO, and PAPP-A concentrations classified study group designation for acute coronary events correctly in 83% of the cases. In conclusion, combined assessment of leukocyte counts, MPO, and PAPP-A was able to correctly classify acute coronary events, suggesting that this could be a promising panel for a multibiomarker approach to assess cardiovascular risk
Columnar defects and vortex fluctuations in layered superconductors
We investigate fluctuations of Josephson-coupled pancake vortices in layered
superconductors in the presence of columnar defects. We study the
thermodynamics of a single pancake stack pinned by columnar defects and obtain
the temperature dependence of localization length, pinning energy and critical
current. We study the creep regime and compute the crossover current between
line-like creep and pancake-like creep motion. We find that columnar defects
effectively increase interlayer Josephson coupling by suppressing thermal
fluctuations of pancakes. This leads to an upward shift in the decoupling line
most pronounced around the matching field.Comment: 5 pages, REVTeX, no figure
Josephson Plasma Resonance as a Structural Probe of Vortex Liquid
Recent developments of the Josephson plasma resonance and transport c-axis
measurements in layered high T superconductors allow to probe Josephson
coupling in a wide range of the vortex phase diagram. We derive a relation
between the field dependent Josephson coupling energy and the density
correlation function of the vortex liquid. This relation provides a unique
opportunity to extract the density correlation function of pancake vortices
from the dependence of the plasma resonance on the -component of the
magnetic field at a fixed -axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let
Local Electronic Structure of Defects in Superconductors
The electronic structure near defects (such as impurities) in superconductors
is explored using a new, fully self-consistent technique. This technique
exploits the short-range nature of the impurity potential and the induced
change in the superconducting order parameter to calculate features in the
electronic structure down to the atomic scale with unprecedented spectral
resolution. Magnetic and non-magnetic static impurity potentials are
considered, as well as local alterations in the pairing interaction. Extensions
to strong-coupling superconductors and superconductors with anisotropic order
parameters are formulated.Comment: RevTex source, 20 pages including 22 figures in text with eps
Numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes
In the present study methodology and algorithm of numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes is presented. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows to use the computational meshes with arbitrary number of cell faces
Numerical studies of the phase diagram of layered type II superconductors in a magnetic field
We report on simulations of layered superconductors using the
Lawrence-Doniach model in the framework of the lowest Landau level
approximation. We find a first order phase transition with a dependence
which agrees very well with the experimental ``melting'' line in YBaCuO. The
transition is not associated with vortex lattice melting, but separates two
vortex liquid states characterised by different degrees of short-range
crystalline order and different length scales of correlations between vortices
in different layers. The transition line ends at a critical end-point at low
fields. We find the magnetization discontinuity and the location of the lower
critical magnetic field to be in good agreement with experiments in YBaCuO.
Length scales of order parameter correlations parallel and perpendicular to the
magnetic field increase exponentially as 1/T at low temperatures. The dominant
relaxation time scales grow roughly exponentially with these correlation
lengths. We find that the first order phase transition persists in the presence
of weak random point disorder but can be suppressed entirely by strong
disorder. No vortex glass or Bragg glass state is found in the presence of
disorder. The consistency of our numerical results with various experimental
features in YBaCuO, including the dependence on anisotropy, and the temperature
dependence of the structure factor at the Bragg peaks in neutron scattering
experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR
Flux-Line Lattice Structures in Untwinned YBa2Cu3O
A small angle neutron scattering study of the flux-line lattice in a large
single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the
c-axis, diffraction spots are observed corresponding to four orientations of a
hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy,
the penetration depth ratio, of 1.18(2) was obtained. The high quality of the
data is such that second order diffraction is observed, indicating a well
ordered FLL. With the field at 33 degrees to c a field dependent re-orientation
of the lattice is observed around 3T.Comment: 4 pages, 4 figure
- …