5 research outputs found
Correlation of microstructure with the wear resistance and fracture toughness of white cast iron alloys
The objective of this investigation was to set down (on the basis of the results obtained by the examination of white cast iron alloys with different contents of alloying elements) a correlation between chemical composition and microstructure, on one hand, and the properties relevant for this group of materials, i.e., wear resistance and fracture toughness, on the other. Experimental results indicate that the volume fraction of the eutectic carbide phase (M3C or M7C3) have an important influence on the wear resistance of white iron alloys under low-stress abrasion conditions. Besides, the martensitic or martensite-austenitic matrix microstructure more adequately reinforced the eutectic carbides, minimizing cracking and removal during wear, than did the austenitic matrix. The secondary carbides which precipitate in the matrix regions of high chromium iron also influence the abrasion behaviour. The results of fracture toughness tests show that the dynamic fracture toughness in white irons is determined mainly by the properties of the matrix. The high chromium iron containing 1.19 wt% V in the as-cast condition, showed the greater fracture toughness when compared to other experimental alloys. The higher toughness was attributed to strengthening during fracture, since very fine secondary carbide particles were present mainly in an austenitic matrix