76 research outputs found

    Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers.

    Get PDF
    α-Synuclein oligomers can be toxic to cells and may be responsible for cell death in Parkinson's disease. Their typically low abundance and highly heterogeneous nature, however, make such species challenging to study using traditional biochemical techniques. By combining fast-flow microfluidics with single-molecule fluorescence, we are able to rapidly follow the process by which oligomers of αS are formed and to characterize the species themselves. We have used the technique to show that populations of oligomers with different FRET efficiencies have varying stabilities when diluted into low ionic strength solutions. Interestingly, we have found that oligomers formed early in the aggregation pathway have electrostatic repulsions that are shielded in the high ionic strength buffer and therefore dissociate when diluted into lower ionic strength solutions. This property can be used to isolate different structural groups of αS oligomers and can help to rationalize some aspects of αS amyloid fibril formation.M.H.H. thanks the Royal Society of Chemistry (Analytical Chemistry Trust Fund) for his studentship. L.T. has been the recipient of a grant PAT Post Doc Outgoing 2009 – 7th Framework Program Marie Curie COFUND actions. A.J.D. is funded by the Schiff Foundation.This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acs.analchem.5b0181

    An Influence of a Sort of Feeding on a Formation of Children’s Health at Early age

    Get PDF
    Purpose: Studying of a sort of feeding influence on a state of children’s health at the early age.Materials and Methods. 113 children of early age from 1 year and 1 month till 3 years old were under observation. They were divided into 2 groups. The first group was made up of 92 children who were on exclusively breast feeding till 4-6 months and the comparison group included 21 children on early artificial feeding. The integrated assessment of a health state was performed and it was studied the chldren’s morbidity of both groups.Results: A comparison of critical parameters of physical and neuropsychоlogical development of the both investigated groups of children in dynamics didn’t not reveal any authentic distinctions. The general morbidity of these children were on exclusively breast feeding till 4-6 months was authentically lower, that.Summary: Receiving resalts specifies an essential role of exclusively breast feeding in formation children’s health at early age

    Quantifying Co-Oligomer Formation by α-Synuclein.

    Get PDF
    Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species associated with Parkinson's disease (PD). In addition, αS can form co-aggregates with its mutational variants and with other proteins such as amyloid-β (Aβ) and tau, which are implicated in Alzheimer's disease. The processes of self-oligomerization and co-oligomerization of αS are, however, challenging to study quantitatively. Here, we have utilized single-molecule techniques to measure the equilibrium populations of oligomers formed in vitro by mixtures of wild-type αS with its mutational variants and with Aβ40, Aβ42, and a fragment of tau. Using a statistical mechanical model, we find that co-oligomer formation is generally more favorable than self-oligomer formation at equilibrium. Furthermore, self-oligomers more potently disrupt lipid membranes than do co-oligomers. However, this difference is sometimes outweighed by the greater formation propensity of co-oligomers when multiple proteins coexist. Our results suggest that co-oligomer formation may be important in PD and related neurodegenerative diseases.The authors are grateful for financial support provided by Dr Tayyeb Hussain Scholarship and the ERC (669237) (M. Iljina), the Schiff Foundation (A. Dear), Alzheimer’s Research UK and Marie-Curie Individual Fellowship (S. De), a fellowship from Fondazione Caritro, Trento (BANDO 2017 PER PROGETTI DI RICERCA SVOLTI DA GIOVANI RICERCATORI POST-DOC) (L. Tosatto), the Boehringer Ingelheim Fonds and the Studienstiftung des deutschen Volkes (P. Flagmeier), the Centre for Misfolding Diseases (A. Dear, P. Flagmeier, C. Dobson, T. Knowles), the ERC (669237) and the Royal Society (D. Klenerman). We are grateful to S. Preet for the expression and purification of A90C ɑS. We thank Y. Ye for providing tau k18

    Nanobodies raised against monomeric alpha-synuclein inhibit fibril formation and destabilize toxic oligomeric species

    Get PDF
    BACKGROUND: The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson’s disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. RESULTS: We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. CONCLUSIONS: The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential

    Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading.

    Get PDF
    The protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation. Here, by a combination of single-molecule fluorescence measurements and kinetic analysis, we find that the reaction in solution involves two unimolecular structural conversion steps, from the disordered to more compact oligomers and then to fibrils, which can elongate by further monomer addition. We have obtained individual rate constants for these key microscopic steps by applying a global kinetic analysis to both the decrease in the concentration of monomeric protein molecules and the increase in oligomer concentrations over a 0.5-140-µM range of αS. The resulting explicit kinetic model of αS aggregation has been used to quantitatively explore seeding the reaction by either the compact oligomers or fibrils. Our predictions reveal that, although fibrils are more effective at seeding than oligomers, very high numbers of seeds of either type, of the order of 10(4), are required to achieve efficient seeding and bypass the slow generation of aggregates through primary nucleation. Complementary cellular experiments demonstrated that two orders of magnitude lower numbers of oligomers were sufficient to generate high levels of reactive oxygen species, suggesting that effective templated seeding is likely to require both the presence of template aggregates and conditions of cellular stress.We thank Dr. Nadia Shivji and Beata Blaszczyk for ɑS protein expression, Dr. Peter Jönsson for help with preliminary TIRFM imaging experiments, Chris Taylor for help with preliminary autodilution experiments and Prof. Michel Goedert for critical reading of the manuscript. M.I. is funded by Dr. Tayyeb-Hussain Scholarship. G.A.G. is funded by the Schiff Foundation . S.G. is funded through a Wellcome Trust Intermediate Clinical Fellowship. Funding from the Frances and Augustus Newman Foundation, the European Research Council and the Biothechnology and Biophysical Sciences Research Council is gratefully acknowledged.This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/10.1073/pnas.152412811

    Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids.

    Get PDF
    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson's disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders.This research study was funded in part by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium (UKPDC) and the NIHR rare disease translational research collaboration and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. We are also grateful to the Augustus Newman and Wolfson Foundations for their support. We thank the Royal Society for the University Research Fellowship of Dr. Steven F. Lee (UF120277).This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acschemneuro.5b00324

    DESIGN OF THE FURNACE FOR THE PROCESSING OF MUNICIPAL SOLID WASTE

    Full text link
    В работе предложена конструкция печи для переработки твердых коммунальных отходов (ТКО) методом пиролиза. Разработанная конструкция обеспечивает повышение энергетической эффективности переработки ТКО.The paper proposes the design of a furnace for processing municipal solid waste (MSW) by the pyrolysis method. The developed design provides an increase in the energy efficiency of MSW processing

    Nanobodies raised against monomeric ɑ-synuclein inhibit fibril formation and destabilize toxic oligomeric species

    Get PDF
    Background:\textbf{Background:} The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson’s disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. Results:\textbf{Results:} We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. Conclusions:\textbf{Conclusions:} The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential.Parkinson’s UK (H-0903). EDG was supported by the Medical Research Council (MRC G1002272). DK was funded by ERC (669237) and the Royal Society
    corecore