894 research outputs found

    A possibility for precise Weinberg angle measurement in centrosymmetric crystals with axis

    Full text link
    We demonstrate that parity nonconserving interaction due to the nuclear weak charge Q_W leads to nonlinear magnetoelectric effect in centrosymmetric paramagnetic crystals. It is shown that the effect exists only in crystals with special symmetry axis k. Kinematically, the correlation (correction to energy) has the form H_PNC ~ Q_W (E,[B,k])(B,k), where B and E are the external magnetic and electric fields. This gives rise to magnetic induction M_PNC ~ Q_W {k(B,[k,E]) + [k,E](B,k)}. To be specific we consider rare-earth trifluorides and, in particular, dysprosium trifluoride which looks the most suitable for experiment. We estimate the optimal temperature for the experiment to be of a few kelvin. For the magnetic field B = 1 T and the electric field E = 10 kV/cm, the expected magnetic induction is 4 \pi M_PNC = 0.5 * 10^-11 G, six orders of magnitude larger than the best sensitivity currently under discussion. Dysprosium has several stable isotopes, and so, comparison of the effects for different isotopes provides possibility for precise measurement of the Weinberg angle.Comment: 7 pages, 1 figure, 2 tables; version 2 - added discussion of neutron distribution uncertaint

    Enhanced longitudinal mode spacing in blue-violet InGaN semiconductor laser

    Full text link
    A novel explanation of observed enhanced longitudinal mode spacing in InGaN semiconductor lasers has been proposed. It has been demonstrated that e-h plasma oscillations, which can exist in the laser active layer at certain driving conditions, are responsible for mode clustering effect. The resonant excitation of the plasma oscillations occurs due to longitudinal mode beating. The separation of mode clusters is typically by an order of magnitude larger that the individual mode spacing.Comment: 3 pages, 2 figure

    Theory of interacting electrons on the honeycomb lattice

    Full text link
    The low-energy theory of electrons interacting via repulsive short-range interactions on graphene's honeycomb lattice at half filling is presented. The exact symmetry of the Lagrangian with local quartic terms for the Dirac field dictated by the lattice is D_2 x U_c(1) x (time reversal), where D_2 is the dihedral group, and U_c(1) is a subgroup of the SU_c(2) "chiral" group of the non-interacting Lagrangian, that represents translations in Dirac language. The Lagrangian describing spinless particles respecting this symmetry is parameterized by six independent coupling constants. We show how first imposing the rotational, then Lorentz, and finally chiral symmetry to the quartic terms, in conjunction with the Fierz transformations, eventually reduces the set of couplings to just two, in the "maximally symmetric" local interacting theory. We identify the two critical points in such a Lorentz and chirally symmetric theory as describing metal-insulator transitions into the states with either time-reversal or chiral symmetry being broken. In the site-localized limit of the interacting Hamiltonian the low-energy theory describes the continuous transitions into the insulator with either a finite Haldane's (circulating currents) or Semenoff's (staggered density) masses, both in the universality class of the Gross-Neveu model. The picture of the metal-insulator transition on a honeycomb lattice emerges at which the residue of the quasiparticle pole at the metallic and the mass-gap in the insulating phase both vanish continuously as the critical point is approached. We argue that the Fermi velocity is non-critical as a consequence of the dynamical exponent being fixed to unity by the emergent Lorentz invariance. Effects of long-range interaction and the critical behavior of specific heat and conductivity are discussed.Comment: 16 revtex pages, 4 figures; typos corrected, new and updated references; published versio

    High frequency dielectric and magnetic anomaly at the phase transition in NaV2O5

    Get PDF
    We found anomalies in the temperature dependence of the dielectric and the magnetic susceptibiliy of NaV_2O_5 in the microwave and far infrared frequency ranges. The anomalies occur at the phase transition temperature T_c, at which the spin gap opens. The real parts of the dielectric constants epsilon_a and epsilon_c decrease below T_c. The decrease of epsilon_a (except for the narrow region close to T_c) is proportional to the intensity of the x-ray reflection appearing at T_c. The dielectric constant anomaly can be explained by the zigzag charge ordering in the ab-plane appearing below T_c. The anomaly of the microwave magnetic losses is probably related to the coupling between the spin and charge degrees of freedom in vanadium ladders.Comment: 3 PS-figures, LATEX-text, new experimental data added, typos correcte

    Ground state order and spin-lattice coupling in tetrahedral spin systems Cu2Te2O5X2

    Get PDF
    High-resolution ac susceptibility and thermal conductivity measurement on Cu2Te2O5X2(X=Br,Cl) single crystals are reported. For Br-sample, sample dependence prevents to distinguish between possibilities of magnetically ordered and spin-singlet ground states. In Cl-sample a three-dimensional transition at 18.5 K is accompanied by almost isotropic behavior of susceptibility and almost switching behavior of thermal conductivity. Thermal conductivity studies suggest the presence of a tremendous spin-lattice coupling characterizing Cl- but not Br-sample. Below the transition Cl-sample is in a complex magnetic state involving AF order but also the elements consistent with the presence of a gap in the excitation spectrum.Comment: version accepted for publication in Phys.Rev.B-Rapid Communicatio

    Gauge-invariant critical exponents for the Ginzburg-Landau model

    Full text link
    The critical behavior of the Ginzburg-Landau model is described in a manifestly gauge-invariant manner. The gauge-invariant correlation-function exponent is computed to first order in the 4āˆ’d4-d and 1/n1/n-expansion, and found to agree with the ordinary exponent obtained in the covariant gauge, with the parameter Ī±=1āˆ’d\alpha=1-d in the gauge-fixing term (āˆ‚Ī¼AĪ¼)2/2Ī±(\partial_\mu A_\mu)^2 /2 \alpha.Comment: 4 pages, no figure

    Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling

    Full text link
    Nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. A special attention is paid to the case, where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser-fields can be coherently absorbed and reemitted by the medium. Thus, the field of medium reaction plays a key role in the interaction processes, which leads to the collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in the fast excitation interchanges between the field and a medium in the form of the optical ringing, which is analogous to polariton beating in the solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave-packets of different group velocities, is shown to significantly affect propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to the resonance in the broadband probe-spectrum, exceed the absorption-line width, since, under the strong-coupling regime, the frequency of the optical ringing exceeds the rate of incoherent relaxation. Contrary to the stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of the collective oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.

    Non-Linear Algebra and Bogolubov's Recursion

    Full text link
    Numerous examples are given of application of Bogolubov's forest formula to iterative solutions of various non-linear equations: one and the same formula describes everything, from ordinary quadratic equation to renormalization in quantum field theory.Comment: LaTex, 21 page

    Magnetic Resonance of the Intrinsic Defects of the Spin-Peierls Magnet CuGeO3

    Full text link
    ESR of the pure monocrystals of CuGeO3 is studied in the frequency range 9-75 GHz and in the temperature interval 1.2-25 K. The splitting of the ESR line into several spectral components is observed below 5 K, in the temperature range where the magnetic susceptibility is suppressed by the spin-Peierls dimerization. The analysis of the magnetic resonance signals allows one to separate the signals of the S=1/2- and S=1 defects of the spin-Peierls phase. The value of g-factor of these signals is close to that of the Cu-ion. The additional line of the magnetic resonance is characterized by an anomalous value of the g-factor and by the threshold-like increase of the microwave susceptibility when the microwave power is increasing. The ESR signals are supposingly attributed to two types of the planar magnetic defects, arising at the boundaries of the domains of the spin-Peierls state with the different values of the phase of the dimerization.Comment: LATEX-text, 12 PS-figures, typos corrected, LATEX-style change

    Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy

    Full text link
    The influence of uniaxial small-scale anisotropy on the stability of the scaling regimes and on the anomalous scaling of the structure functions of a passive scalar advected by a Gaussian solenoidal velocity field with finite correlation time is investigated by the field theoretic renormalization group and operator product expansion within one-loop approximation. Possible scaling regimes are found and classified in the plane of exponents Ļµāˆ’Ī·\epsilon-\eta, where Ļµ\epsilon characterizes the energy spectrum of the velocity field in the inertial range Eāˆk1āˆ’2ĻµE\propto k^{1-2\epsilon}, and Ī·\eta is related to the correlation time of the velocity field at the wave number kk which is scaled as kāˆ’2+Ī·k^{-2+\eta}. It is shown that the presence of anisotropy does not disturb the stability of the infrared fixed points of the renormalization group equations which are directly related to the corresponding scaling regimes. The influence of anisotropy on the anomalous scaling of the structure functions of the passive scalar field is studied as a function of the fixed point value of the parameter uu which represents the ratio of turnover time of scalar field and velocity correlation time. It is shown that the corresponding one-loop anomalous dimensions, which are the same (universal) for all particular models with concrete value of uu in the isotropic case, are different (nonuniversal) in the case with the presence of small-scale anisotropy and they are continuous functions of the anisotropy parameters, as well as the parameter uu. The dependence of the anomalous dimensions on the anisotropy parameters of two special limits of the general model, namely, the rapid-change model and the frozen velocity field model, are found when uā†’āˆžu\to \infty and uā†’0u\to 0, respectively.Comment: revtex, 25 pages, 37 figure
    • ā€¦
    corecore