171 research outputs found

    Obesity and Breast Cancer: Interaction or Interference with the Response to Therapy?

    Get PDF
    Background: Aromatase inhibitors (AI) are widely used for treating hormone-sensitive breast cancer (BC). Obesity, however, due to aromatase-mediated androgen conversion into estradiol in the peripheral adipose tissue, might impair AI inhibitory capacity. We aimed at identifying a cut-off of body mass index (BMI) with significant prognostic impact, in a cohort of stage I-II BC patients on systemic adjuvant therapy with AI. Methods: we retrospectively evaluated routinely collected baseline parameters. The optimal BMI cut-off affecting disease-free survival (DFS) in AI-treated BC patients was identified through maximally selected rank statistics; non-linear association between BMI and DFS in the AI cohort was assessed by hazard-ratio-smoothed curve analysis using BMI as continuous variable. The impact of the BMI cut-off on survival outcomes was estimated through Kaplan-Meier plots, with log-rank test and hazard ratio estimation comparing patient subgroups. Results: A total of 319 BC patients under adjuvant endocrine therapy and/or adjuvant chemotherapy were included. Curve-fitting analysis showed that for a BMI cut-off >29 in AI-treated BC patients (n = 172), DFS was increasingly deteriorating and that the impact of BMI on 2-year DFS identified a cut-off specific only for the cohort of postmenopausal BC patients under adjuvant therapy with AI. Conclusion: in radically resected hormone-sensitive BC patients undergoing neoadjuvant or adjuvant chemotherapy and treated with AI, obesity represents a risk factor for recurrence, with a significantly reduced 2-year DFS

    Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Get PDF
    To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    Get PDF
    As one of the brightest active blazars in both X-ray and very high energy γ\gamma-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for γ\gamma-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest γ\gamma-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 σ\sigma is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ\gamma-ray flux above 1 TeV by a factor of 6.6±\pm2.2 from its steady emission. In particular, the γ\gamma-ray flux above 8 TeV is detected with a significance better than 4 σ\sigma. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of γ\gamma-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and γ\gamma-rays are also investigated.Comment: have been accepted for publication at Ap
    corecore