13 research outputs found
Solid molecular hydrogen: The Broken Symmetry Phase
By performing constant-pressure variable-cell ab initio molecular dynamics
simulations we find a quadrupolar orthorhombic structure, of symmetry,
for the broken symmetry phase (phase II) of solid H2 at T=0 and P =110 - 150
GPa. We present results for the equation of state, lattice parameters and
vibronic frequencies, in very good agreement with experimental observations.
Anharmonic quantum corrections to the vibrational frequencies are estimated
using available data on H2 and D2. We assign the observed modes to specific
symmetry representations.Comment: 5 pages (twocolumn), 4 Postscript figures. To appear in Phys. Rev.
Let
Unusually complex phase of dense nitrogen at extreme conditions
Nitrogen exhibits an exceptional polymorphism under extreme conditions, making it unique amongst the elemental diatomics and a valuable testing system for experiment-theory comparison. Despite attracting considerable attention, the structures of many high-pressure nitrogen phases still require unambiguous determination. Here, we report the structure of the elusive high-pressure high-temperature polymorph at 56 GPa and ambient temperature, determined by single crystal X-ray diffraction, and investigate its properties using ab initio simulations. We find that is characterised by an extraordinarily large unit cell containing 48 molecules. Geometry optimisation favours the experimentally determined structure and density functional theory calculations find to have the lowest enthalpy of the molecular nitrogen polymorphs that exist between 30 and 60 GPa. The results demonstrate that very complex structures, similar to those previously only observed in metallic elements, can become energetically favourable in molecular systems at extreme pressures and temperatures