1 research outputs found

    SDiff(2) Toda equation -- hierarchy, Ï„\tau function, and symmetries

    Full text link
    A continuum limit of the Toda lattice field theory, called the SDiff(2) Toda equation, is shown to have a Lax formalism and an infinite hierarchy of higher flows. The Lax formalism is very similar to the case of the self-dual vacuum Einstein equation and its hyper-K\"ahler version, however now based upon a symplectic structure and the group SDiff(2) of area preserving diffeomorphisms on a cylinder S1×RS^1 \times \R. An analogue of the Toda lattice tau function is introduced. The existence of hidden SDiff(2) symmetries are derived from a Riemann-Hilbert problem in the SDiff(2) group. Symmetries of the tau function turn out to have commutator anomalies, hence give a representation of a central extension of the SDiff(2) algebra.Comment: 16 pages (``vanilla.sty" is attatched to the end of this file after ``\bye" command
    corecore