4 research outputs found
Modules-at-infinity for quantum vertex algebras
This is a sequel to \cite{li-qva1} and \cite{li-qva2} in a series to study
vertex algebra-like structures arising from various algebras such as quantum
affine algebras and Yangians. In this paper, we study two versions of the
double Yangian , denoted by and
with a nonzero complex number. For each nonzero
complex number , we construct a quantum vertex algebra and prove
that every -module is naturally a -module. We also show
that -modules are what we call
-modules-at-infinity. To achieve this goal, we study what we call
-local subsets and quasi-local subsets of \Hom (W,W((x^{-1}))) for any
vector space , and we prove that any -local subset generates a (weak)
quantum vertex algebra and that any quasi-local subset generates a vertex
algebra with as a (left) quasi module-at-infinity. Using this result we
associate the Lie algebra of pseudo-differential operators on the circle with
vertex algebras in terms of quasi modules-at-infinity.Comment: Latex, 48 page
Vertex operator representation of Weyl-Moyal-Fairlie Sin-algebra
SIGLEAvailable from Bonn Univ. (DE). Physikalisches Inst. / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman