2,417 research outputs found
Evaluation of performance impairment by spacecraft contaminants
The environmental contaminants (isolated as off-gases in Skylab and Apollo missions) were evaluated. Specifically, six contaminants were evaluated for their effects on the behavior of juvenile baboons. The concentrations of contaminants were determined through preliminary range-finding studies with laboratory rats. The contaminants evaluated were acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), trichloroethylene (TCE), heptane and Freon 21. When the studies of the individual gases were completed, the baboons were also exposed to a mixture of MEK and TCE. The data obtained revealed alterations in the behavior of baboons exposed to relatively low levels of the contaminants. These findings were presented at the First International Symposium on Voluntary Inhalation of Industrial Solvents in Mexico City, June 21-24, 1976. A preprint of the proceedings is included
Local Phonon Density of States in an Elastic Substrate
The local, eigenfunction-weighted acoustic phonon density of states (DOS)
tensor is calculated for a model substrate consisting of a semi-infinite
isotropic elastic continuum with a stress-free surface. On the surface, the
local DOS is proportional to the square of the frequency, as for the
three-dimensional Debye model, but with a constant of proportionality that is
considerably enhanced compared to the Debye value, a consequence of the
Rayleigh surface modes. The local DOS tensor at the surface is also
anisotropic, as expected. Inside the substrate the local DOS is both spatially
anisotropic and non-quadratic in frequency. However, at large depths, the local
DOS approaches the isotropic Debye value. The results are applied to a Si
substrate.Comment: 7 pages, 2 figures, RevTe
Continuous Wavelets on Compact Manifolds
Let be a smooth compact oriented Riemannian manifold, and let
be the Laplace-Beltrami operator on . Say 0 \neq f
\in \mathcal{S}(\RR^+), and that . For , let
denote the kernel of . We show that is
well-localized near the diagonal, in the sense that it satisfies estimates akin
to those satisfied by the kernel of the convolution operator on
\RR^n. We define continuous -wavelets on , in such a
manner that satisfies this definition, because of its localization
near the diagonal. Continuous -wavelets on are analogous to
continuous wavelets on \RR^n in \mathcal{S}(\RR^n). In particular, we are
able to characterize the Hlder continuous functions on by
the size of their continuous wavelet transforms, for
Hlder exponents strictly between 0 and 1. If is the torus
\TT^2 or the sphere , and (the ``Mexican hat''
situation), we obtain two explicit approximate formulas for , one to be
used when is large, and one to be used when is small
Phase-Coherent Transport through a Mesoscopic System: A New Probe of Non-Fermi-Liquid Behavior
A novel chiral interferometer is proposed that allows for a direct
measurement of the phase of the transmission coefficient for transport through
a variety of mesoscopic structures in a strong magnetic field. The effects of
electron-electron interaction on this phase is investigated with the use of
finite-size bosonization techniques combined with perturbation theory
resummation. New non-Fermi-liquid phenomena are predicted in the FQHE regime
that may be used to distinguish experimentally between Luttinger and Fermi
liquids.Comment: 4 pages, 3 figures, Revte
Indirect coupling between spins in semiconductor quantum dots
The optically induced indirect exchange interaction between spins in two
quantum dots is investigated theoretically. We present a microscopic
formulation of the interaction between the localized spin and the itinerant
carriers including the effects of correlation, using a set of canonical
transformations. Correlation effects are found to be of comparable magnitude as
the direct exchange. We give quantitative results for realistic quantum dot
geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure
Kinematic Effects of Tidal Interaction on Galaxy Rotation Curves
We use self-consistent N-body models, in conjunction with models of test
particles moving in galaxy potentials, to explore the initial effects of
interactions on the rotation curves of spiral galaxies. Using nearly
self-consistent disk/bulge/halo galaxy models (Kuijken & Dubinski 1995), we
simulate the first pass of galaxies on nearly parabolic orbits; we vary orbit
inclinations, galaxy halo masses and impact parameters. For each simulation, we
mimic observed rotation curves of the model galaxies. Transient
interaction-induced features of the curves include distinctly rising or falling
profiles at large radii and pronounced bumps in the central regions. Remarkably
similar features occur in our statistical sample of optical emission-line
rotation curves of spiral galaxies in tight pairs and n-tuples.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter
Coulomb "blockade" of Nuclear Spin Relaxation in Quantum Dots
We study the mechanism of nuclear spin relaxation in quantum dots due to the
electron exchange with 2D gas. We show that the nuclear spin relaxation rate is
dramatically affected by the Coulomb blockade and can be controlled by gate
voltage. In the case of strong spin-orbit coupling the relaxation rate is
maximal in the Coulomb blockade valleys whereas for the weak spin-orbit
coupling the maximum of the nuclear spin relaxation rate is near the Coulomb
blockade peaks.Comment: 4 pages, 3 figure
The application of inelastic neutron scattering to investigate the interaction of methyl propanoate with silica
A modern industrial route for the manufacture of methyl methacrylate involves the reaction of methyl propanoate and formaldehyde over a silica-supported Cs catalyst. Although the process has been successfully commercialised, little is known about the surface interactions responsible for the forward chemistry. This work concentrates upon the interaction of methyl propanoate over a representative silica. A combination of infrared spectroscopy, inelastic neutron scattering, DFT calculations, X-ray diffraction and temperature-programmed desorption is used to deduce how the ester interacts with the silica surface
Evaluation of the CNS and cardiovascular effects of prolonged exposure to bromotrifluromethane (CBrF3)
The proposed use of bromotrifluoromethane (CBrF3) as a fire extinguishant in aircraft, spacecraft and submarines has stimulated increasing interest and research in the toxicological properties of this compound. In a spacecraft, because of its unique recirculating life support system, the introduction of CBrF3 by leakage or intentional discharge, will result in continuous exposure of crewman to low concentrations of this compound for periods of up to 7 days, or possibly even longer. The effects of low concentrations of CBrF3, under continuous exposure conditions, on the CNS and cardiovascular systems of animals to enable an assessment of these risks were investigated
- …