28 research outputs found
Bentho-pelagic relations in the deep-water part of the Okhotsk Sea by the data of stable isotopes Π‘ and N analysis
Composition, abundance, diet and trophic status are analyzed for dominant benthic and pelagic species in the deep-water Okhotsk Sea on the data collected in demersal and pelagic trawl surveys conducted by Pacific Fisheries Research Center (TINRO). Isotope composition of13Π‘ and15N is determined for tissues of 107 species of plankton, benthos, demersal fish, and cephalopods, which form a basis of pelagic and benthic communities. The carbon isotope content is significantly different between these groups: d13Π‘ ranges from -23.30 to -19.90 β° for zooplankton, from -18.90 to -13.33 β° for benthos, from -22.10 to -18.90 β° for fish (mean values), and from -20.08 to -15.75 β° for cephalopods. It depends mainly on proportion of pelagic and benthic food in their diet. Following to these values, 30 % of examined species of demersal fishes and cephalopods use resources of detritus food chain as the base of their diet. The range of d15N is from 6.79 ( Megayoldia thraciaeformis ), 6.88 ( Eucalanus bungii ) to 18.26 β° ( Molpadia roretzii ). Its highest level is observed for 4 species of benthic invertebrates and 8 species of demersal fishes on the continental slope characterized by high tropic level (β₯5) and included to the bentho-pelagic food chain, that corresponds with their d13Π‘ values. Trophic relations in the deep-water Okhotsk Sea demonstrates high dependence between benthic and pelagiΡ communities, as far as many dominant species of pelagic and demersal nekton consume both benthic and pelagic food. Feeding about of 70 % of dominant species of demersal fishes and cephalopods is based on grazing rather than on detritus food
ΠΠΎΠ²Π°Ρ ΠΌΡΡΠ°ΡΠΈΡ Π² Π³Π΅Π½Π΅ TYMP: ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ MNGIE
Mitochondrial neurogastrointestinal encephalomyopathy is an extremely rare (1β9:1 000 000, Orphanet, 2021) multisystem genetic disease caused by mutations in the TYMP gene encoding the enzyme thymidine phosphorylase.The article presents the data of a thirteenβyear survey on 40βyearβold patient D. with clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy syndrome associated with the previously undescribed missense mutation c.1301G>T (p.Gly434Val) of the TYMP gene. Detailed clinical picture (gastrointestinal dysfunction, cachexia, blepharoptosis, ophthalmoparesis, peripheral polyneuropathy and leukoaraiosis), electroneuromyography data (demyelination with secondary axonopathy), high blood serum level of dihydrothymine together with normal levels of thymidine and deoxyuridine made it possible to verify the diagnosis. Histopathological examination revealed atrophy of the longitudinal (outer) muscle layer of the small and large intestines and a significant decrease in the number of CD117+ cells (telocytes), signs of damage to the striated skeletal muscles of a mixed nature with a predominance of the myogenic pattern, as well the destruction of the myelin sheaths of peripheral nerves. Histochemical examination did not reveal βragged red fibersβ characteristic of mitochondrial pathology. Transmission electron microscopy demonstrated the presence of megalomitochondria in the myocardium.Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ³Π°ΡΡΡΠΎΠΈΠ½ΡΠ΅ΡΡΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ½ΡΠ΅ΡΠ°Π»ΠΎΠΌΠΈΠΎΠΏΠ°ΡΠΈΠΈ β ΡΠ΅Π΄ΠΊΠΎΠ΅ (1β9:1000000, Orphanet, 2021) Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΡΠ»ΡΡΠΈΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ΅ ΠΌΡΡΠ°ΡΠΈΡΠΌΠΈ Π² ΡΠ΄Π΅ΡΠ½ΠΎΠΌ Π³Π΅Π½Π΅ TYMP, ΠΊΠΎΠ΄ΠΈΡΡΡΡΠ΅ΠΌ ΡΠ΅ΡΠΌΠ΅Π½Ρ ΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΡΠΎΡΡΠΎΡΠΈΠ»Π°Π·Ρ.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ 13βΠ»Π΅ΡΠ½Π΅Π³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΊΠΈ Π., 40 Π»Π΅Ρ, Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ³Π°ΡΡΡΠΎΠΈΠ½ΡΠ΅ΡΡΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ½ΡΠ΅ΡΠ°Π»ΠΎΠΌΠΈΠΎΠΏΠ°ΡΠΈΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠΌ Ρ ΡΠ°Π½Π΅Π΅ Π½Π΅ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΌΠΈΡΡΠ΅Π½ΡβΠ·Π°ΠΌΠ΅Π½ΠΎΠΉ c.1301G>T (p.Gly434Val) Π² Π³Π΅Π½Π΅ TYMP. ΠΠΈΠ°Π³Π½ΠΎΠ· ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ³Π°ΡΡΡΠΎΠΈΠ½ΡΠ΅ΡΡΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ½ΡΠ΅ΡΠ°Π»ΠΎΠΌΠΈΠΎΠΏΠ°ΡΠΈΠΈ Π±ΡΠ» ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ (Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎβΠΊΠΈΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΠ°, ΠΊΠ°Ρ
Π΅ΠΊΡΠΈΡ, Π±Π»Π΅ΡΠ°ΡΠΎΠΏΡΠΎΠ·, ΠΎΡΡΠ°Π»ΡΠΌΠΎΠΏΠ°ΡΠ΅Π·, ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠΎΠ»ΠΈΠ½Π΅ΠΉΡΠΎΠΏΠ°ΡΠΈΡ ΠΈ Π»Π΅ΠΉΠΊΠΎΡΠ½ΡΠ΅ΡΠ°Π»ΠΎΠΏΠ°ΡΠΈΡ), ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π΅ΠΉΡΠΎΠΌΠΈΠΎΠ³ΡΠ°ΡΠΈΠΈ (Π΄Π΅ΠΌΠΈΠ΅Π»ΠΈΠ½ΠΈΠ·Π°ΡΠΈΡ Ρ Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ Π°ΠΊΡΠΎΠ½ΠΎΠΏΠ°ΡΠΈΠ΅ΠΉ), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ²Π½Ρ Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠΈΠΌΠΈΠ½Π° Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠΎΠ²Π½ΡΡ
ΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π° ΠΈ Π΄Π΅Π·ΠΎΠΊΡΠΈΡΡΠΈΠ΄ΠΈΠ½Π°. ΠΠ°ΡΠΎΠ³ΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ²ΠΈΠ»ΠΎ Π°ΡΡΠΎΡΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ (Π½Π°ΡΡΠΆΠ½ΠΎΠ³ΠΎ) ΠΌΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ ΡΠΎΠ½ΠΊΠΎΠΉ ΠΈ ΡΠΎΠ»ΡΡΠΎΠΉ ΠΊΠΈΡΠΎΠΊ ΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° CD117+βΠΊΠ»Π΅ΡΠΎΠΊ (ΡΠ΅Π»ΠΎΡΠΈΡΠΎΠ²), ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΊΠ΅Π»Π΅ΡΠ½ΡΡ
ΠΌΡΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° Ρ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°ΡΡΠ΅ΡΠ½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π΅ΡΡΡΡΠΊΡΠΈΡ ΠΌΠΈΠ΅Π»ΠΈΠ½ΠΎΠ²ΡΡ
ΠΎΠ±ΠΎΠ»ΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π΅ΡΠ²ΠΎΠ². ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ S100βΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π²Π΅Π³Π΅ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠΈΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ΅Π½ΠΊΠΈ Π½Π΅ Π²ΡΡΠ²ΠΈΠ»ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. ΠΡΠΈ Π³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π΅ Π±ΡΠ»ΠΈ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ Β«ΡΠ²Π°Π½ΡΠ΅ ΠΊΡΠ°ΡΠ½ΡΠ΅ Π²ΠΎΠ»ΠΎΠΊΠ½Π°Β», Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠ΅ Π΄Π»Ρ ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΎΠΏΠ°ΡΠΈΠΉ. Π’ΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»Π° Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎΠΌΠΈΠΎΡΠΈΡΠΎΠ² ΠΈ ΠΌΠ΅Π³Π°Π»ΠΎΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΉ Π»Π΅ΠΉΠΎΠΌΠΈΠΎΡΠΈΡΠΎΠ² ΠΊΠΈΡΠ΅ΡΠ½ΠΈΠΊΠ°
ΠΡΠΈΡΠΈΠ½Ρ Π»ΠΎΠΆΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡΠ° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄ΠΈΡΡΠ΅ΡΠ»ΠΈΠ½ΠΎΠΏΠ°ΡΠΈΠ΅ΠΉ: ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ
Differential diagnosis of inflammatory myopathies with hereditary muscular dystrophies accompanied by a secondary inflammatory process is a timeβconsuming clinical and pathomorphological task. In particular, false diagnosis of polymyositis in patients with dysferlinopathy reaches 25 % of cases.A 40βyearβold female patient with a limbβgirdle phenotype of dysferlinopathy, initially diagnosed as polymyositis, is presented. The reasons that led to the erroneous diagnosis were: sporadic case; subacute onset; proximal muscle weakness; myalgia, which stopped on the glucocorticosteroid therapy; high levels of creatine phosphokinase (up to 17 times); the presence of lymphocyticβmacrophage infiltrate in the muscle biopsy and the absence of magnetic resonance imaging data in primary examination of the patient.The refractoriness of clinical and laboratory signs to complex immunosuppressive therapy was the reason for revising the muscle biopsy with typing of the inflammatory infiltrate. The predominantly unexpressed perivascular infiltrate was characterized by the predominance of macrophages and, to a lesser extent, CD4+, which indicated the secondary nature of the inflammation in the muscle observed in some hereditary muscular dystrophies. When conducting an immunohistochemical reaction, the absence of the dysferlin protein in the sarcoplasmic membrane was revealed.Wholeβexome sequencing (NGS) revealed a mutation in exon 39 of the DYSF gene (p.Gln1428Ter) in the heterozygous state, which leads to the appearance of a stop codon and premature termination of protein translation. MLPA method registered 3 copies of exons 18, 19, 20, 22, 24 of the DYSF gene.Thus, this clinical example reflects the main methodological errors and possible effects of immunosuppressive therapy in patients with dysferlinopathy.ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠΈΠΎΠΏΠ°ΡΠΈΠΉ, ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°ΡΡΠΈΡ
ΡΡ Π²ΡΠΎΡΠΈΡΠ½ΡΠΌ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌ, Ρ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΌΡΡΠ΅ΡΠ½ΡΠΌΠΈ Π΄ΠΈΡΡΡΠΎΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΈ ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎβΠΏΠ°ΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π»ΠΎΠΆΠ½Π°Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡΠ° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄ΠΈΡΡΠ΅ΡΠ»ΠΈΠ½ΠΎΠΏΠ°ΡΠΈΠ΅ΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ 25 % ΡΠ»ΡΡΠ°Π΅Π².ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΊΠ° 40 Π»Π΅Ρ Ρ ΠΏΠΎΡΡΠ½ΠΎβΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ½ΡΠΌ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΎΠΌ Π΄ΠΈΡΡΠ΅ΡΠ»ΠΈΠ½ΠΎΠΏΠ°ΡΠΈΠΈ, ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΈΠΌΠΈΠΎΠ·ΠΈΡ. ΠΡΠΈΡΠΈΠ½Ρ, ΠΏΠΎΠ²Π»Π΅ΠΊΡΠΈΠ΅ ΠΎΡΠΈΠ±ΠΎΡΠ½ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ: ΡΠΏΠΎΡΠ°Π΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅; ΠΏΠΎΠ΄ΠΎΡΡΡΡΠΉ Π΄Π΅Π±ΡΡ; ΠΏΡΠΎΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΌΡΡΠ΅ΡΠ½Π°Ρ ΡΠ»Π°Π±ΠΎΡΡΡ; ΠΌΠΈΠ°Π»Π³ΠΈΡ, ΠΊΡΠΏΠΈΡΠΎΠ²Π°Π²ΡΠ°ΡΡΡ Π½Π° ΡΠΎΠ½Π΅ Π³Π»ΡΠΊΠΎΠΊΠΎΡΡΠΈΠΊΠΎΡΡΠ΅ΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ; ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΊΡΠ΅Π°ΡΠΈΠ½ΡΠΎΡΡΠΎΠΊΠΈΠ½Π°Π·Ρ (Π΄ΠΎ 17 ΡΠ°Π·); Π½Π°Π»ΠΈΡΠΈΠ΅ Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°ΡΠ½ΠΎβΠΌΠ°ΠΊΡΠΎΡΠ°Π³Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°ΡΠ° Π² ΠΌΡΡΠ΅ΡΠ½ΠΎΠΌ Π±ΠΈΠΎΠΏΡΠ°ΡΠ΅ ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ
ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎβΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΌ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ.Π Π΅ΡΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎβΠ»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΊ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»Π° ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π±ΠΈΠΎΠΏΡΠΈΠΈ ΠΌΡΡΡΡ Ρ ΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°ΡΠ°. ΠΠ΅Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΉ, ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠ΅ΡΠΈΠ²Π°ΡΠΊΡΠ»ΡΡΠ½ΡΠΉ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π»ΡΡ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡΠΎΡΠ°Π³ΠΎΠ² ΠΈ, Π² ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, CD4+, ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π»ΠΎ Π½Π° Π²ΡΠΎΡΠΈΡΠ½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ Π² ΠΌΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΡΡΠ΅ΡΠ½ΡΡ
Π΄ΠΈΡΡΡΠΎΡΠΈΡΡ
. ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π΄ΠΈΡΡΠ΅ΡΠ»ΠΈΠ½Π° Π² ΡΠ°ΡΠΊΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π΅.Π Ρ
ΠΎΠ΄Π΅ ΠΏΠΎΠ»Π½ΠΎΡΠΊΠ·ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ (NGS) Π²ΡΡΠ²Π»Π΅Π½Π° ΠΌΡΡΠ°ΡΠΈΡ Π² 39βΠΌ ΡΠΊΠ·ΠΎΠ½Π΅ Π³Π΅Π½Π° DYSF (p.Gln1428Ter) Π² Π³Π΅ΡΠ΅ΡΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠ°Ρ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΏβΠΊΠΎΠ΄ΠΎΠ½Π° ΠΈ ΠΏΡΠ΅ΠΆΠ΄Π΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠΌΠΈΠ½Π°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ Π±Π΅Π»ΠΊΠ°. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ MLPA Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ ΠΏΠΎ 3 ΠΊΠΎΠΏΠΈΠΈ 18, 19, 20, 22, 24βΠ³ΠΎ ΡΠΊΠ·ΠΎΠ½ΠΎΠ² Π³Π΅Π½Π° DYSF. ΠΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄ΠΈΡΡΠ΅ΡΠ»ΠΈΠ½ΠΎΠΏΠ°ΡΠΈΠ΅ΠΉ
Piezo modulated active grating for selecting X ray pulses separated by one nanosecond
We present a novel method of temporal modulation of X-ray radiation for time resolved experiments. To control the intensity of the X-ray beam, the Bragg reflection of a piezoelectric crystal is modified using comb-shaped electrodes deposited on the crystal surface. Voltage applied to the electrodes induces a periodic deformation of the crystal that acts as a diffraction grating, splitting the original Bragg reflection into several satellites. A pulse of X-rays can be created by rapidly switching the voltage on and off. In our prototype device the duty cycle was limited to similar to 1 ns by the driving electronics. The prototype can be used to generate X-ray pulses from a continuous source. It can also be electrically correlated to a synchrotron light source and be activated to transmit only selected synchrotron pulses. Since the device operates in a non-resonant mode, different activation patterns and pulse durations can be achieved. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License
he amyloid hypothesis of Alzheimer's disease: past and present, hopes and disappointments
In 1887, S.A. Belyakov, a physician of the Imperial Medical and Surgical Academy, first described amyloid deposits in the brain of patients with dementia. Later, in 1906, A. Alzheimer revealed amyloid plaques and tau tangles in a patient with clinical signs of dementia. Over the following 100 years, the development of the concept of the amyloid origin of Alzheimer's disease (AD) confirmed numerous relationships between the brain accumulation of APs and cognitive decline. And if at the beginning of the amyloid era many researchers considered that the disease was caused by amyloid beta (AΞ²) protein overproduction, in recent years they have increasingly pointed to a defect in the mechanisms of AΞ² clearance, especially after the discovery of the lymphatic system of the brain. The role of disturbed homeostasis of redox-active metals, primarily iron and copper, in the development of the disease is also considered.The amyloid hypothesis of AD has served as the basis for several areas in the design of drugs, such as secretase inhibitors, immunomodulatory drugs for active and passive immunization. However, only one drug (Akatinol memantine, an inhibitor of NMDA receptors and glutamatergic excitotoxicity) for the treatment of AD has been introduced into clinical practice over the past 20 years. Of interest are the data obtained in new studies of Akatinol memantine, which suggest that the latter is able to some extent affect the main pathophysiological processes underlying the development of cognitive impairment in Alzheimer-type pathology