190 research outputs found

    Quasirandomness in hypergraphs

    Get PDF
    An nn-vertex graph GG of edge density pp is considered to be quasirandom if it shares several important properties with the random graph G(n,p)G(n,p). A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph GG possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.Comment: 19 page

    TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals

    Get PDF
    Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with alpha-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics

    Dosage-Dependent Phenotypes in Models of Human 16p11.2 Lesions Found in Autism

    Get PDF
    Recurrent copy number variations (CNVs) of human 16p11.2 have been associated with a variety of developmental/neurocognitive syndromes. In particular, deletion of 16p11.2 is found in patients with autism, developmental delay, and obesity. Patients with deletions or duplications have a wide range of clinical features, and siblings carrying the same deletion often have diverse symptoms. To study the consequence of 16p11.2 CNVs in a systematic manner, we used chromosome engineering to generate mice harboring deletion of the chromosomal region corresponding to 16p11.2, as well as mice harboring the reciprocal duplication. These 16p11.2 CNV models have dosage-dependent changes in gene expression, viability, brain architecture, and behavior. For each phenotype, the consequence of the deletion is more severe than that of the duplication. Of particular note is that half of the 16p11.2 deletion mice die postnatally; those that survive to adulthood are healthy and fertile, but have alterations in the hypothalamus and exhibit a “behavior trap” phenotype—a specific behavior characteristic of rodents with lateral hypothalamic and nigrostriatal lesions. These findings indicate that 16p11.2 CNVs cause brain and behavioral anomalies, providing insight into human neurodevelopmental disorders

    Measuring health inequalities in Albania: a focus on the distribution of general practitioners

    Get PDF
    BACKGROUND: The health workforce has a dynamically changing nature and the regular documentation of the distribution of health professionals is a persistent policy concern. The aim of the present study was to examine available human medical resources in primary care and identify possible inequalities regarding the distribution of general practitioners in Albania between 2000 and 2004. METHODS: With census data, we investigated the degree of inequality by calculating relative inequality indices. We plotted the Lorenz curves and calculated the Gini, Atkinson and Robin Hood indices and decile ratios, both before and after adjusting for mortality and consultation rates. RESULTS: The Gini index for the distribution of general practitioners in 2000 was 0.154. After adjusting for mortality it was 0.126, while after adjusting for consultation rates it was 0.288. The Robin Hood index for 2000 was 11.2%, which corresponds to 173 general practitioners who should be relocated in order to achieve equality. The corresponding figure after adjusting for mortality was 9.2% (142 general practitioners), while after adjusting for consultation rates the number was 20.6% (315). These figures changed to 6.3% (100), 6.3% (115) and 19.8% (315) in 2004. CONCLUSION: There was a declining trend in the inequality of distribution of general practitioners in Albania between 2000 and 2004. The trend in inequality was apparent irrespective of the relative inequality indicator used. The level of inequality varied depending on the adjustment method used. Reallocation strategies for general practitioners in Albania could be the key in alleviating the inequalities in primary care workforce distribution

    Molecular and neurological characterizations of three Saudi families with lipoid proteinosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipoid proteinosis is a rare autosomal recessive disease characterized by cutaneous and mucosal lesions and hoarseness appearing in early childhood. It is caused by homozygous or compound heterozygous mutations in the <it>ECM1 </it>gene. The disease is largely uncharacterized in Arab population and the mutation(s) spectrum in the Arab population is largely unknown. We report the neurologic and neuroradiologic characteristics and <it>ECM1 </it>gene mutations of seven individuals with lipoid proteinosis (LP) from three unrelated consanguineous families.</p> <p>Methods</p> <p>Clinical, neurologic, and neuro-ophthalmologic examinations; skin histopathology; brain CT and MRI; and sequencing of the full<it>ECM1 </it>gene.</p> <p>Results</p> <p>All seven affected individuals had skin scarring and hoarseness from early childhood. The two children in Family 1 had worse skin involvement and worse hoarseness than affected children of Families 2 and 3. Both children in Family 1 were modestly mentally retarded, and one had typical calcifications of the amygdalae on CT scan. Affected individuals in Families 2 and 3 had no grossneurologic, neurodevelopmental, or neuroimaging abnormalities. Skin histopathology was compatible with LP in all three families. Sequencing the full coding region of <it>ECM1 </it>gene revealed two novel mutationsin Family 1 (c.1300-1301delAA) and Family 2 (p.Cys269Tyr) and in Family 3 a previously described 1163 bp deletion starting 34 bp into intron 8.</p> <p>Conclusions</p> <p>These individuals illustrate the neurologic spectrum of LP, including variable mental retardation, personality changes, and mesial temporal calcificationand imply that significant neurologic involvement may be somewhat less common than previously thought. The cause of neurologic abnormalities was not clear from either neuroimaging or from what is known about <it>ECM1 </it>function. The severity of dermatologic abnormalities and hoarseness generally correlated with neurologic abnormalities, with Family 1 being somewhat more affected in all spheres than the other two families. Nevertheless, phenotype-genotype correlation was not obvious, possibly because of difficulty quantifying the neurologic phenotype and because of genetic complexity.</p

    LIPH Expression in Skin and Hair Follicles of Normal Coat and Rex Rabbits

    Get PDF
    Natural mutations in the LIPH gene were shown to be responsible for hair growth defects in humans and for the rex short hair phenotype in rabbits. In this species, we identified a single nucleotide deletion in LIPH (1362delA) introducing a stop codon in the C-terminal region of the protein. We investigated the expression of LIPH between normal coat and rex rabbits during critical fetal stages of hair follicle genesis, in adults and during hair follicle cycles. Transcripts were three times less expressed in both fetal and adult stages of the rex rabbits than in normal rabbits. In addition, the hair growth cycle phases affected the regulation of the transcription level in the normal and mutant phenotypes differently. LIPH mRNA and protein levels were higher in the outer root sheath (ORS) than in the inner root sheath (IRS), with a very weak signal in the IRS of rex rabbits. In vitro transfection shows that the mutant protein has a reduced lipase activity compared to the wild type form. Our results contribute to the characterization of the LIPH mode of action and confirm the crucial role of LIPH in hair production

    Balancing influence between actors in healthcare decision making

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthcare costs in most developed countries are not clearly linked to better patient and public health outcomes, but are rather associated with service delivery orientation. In the U.S. this has resulted in large variation in healthcare availability and use, increased cost, reduced employer participation in health insurance programs, and reduced overall population health outcomes. Recent U.S. healthcare reform legislation addresses only some of these issues. Other countries face similar healthcare issues.</p> <p>Discussion</p> <p>A major goal of healthcare is to enhance patient health outcomes. This objective is not realized in many countries because incentives and structures are currently not aligned for maximizing population health. The misalignment occurs because of the competing interests between "actors" in healthcare. In a simplified model these are individuals motivated to enhance their own health; enterprises (including a mix of nonprofit, for profit and government providers, payers, and suppliers, etc.) motivated by profit, political, organizational and other forces; and government which often acts in the conflicting roles of a healthcare payer and provider in addition to its role as the representative and protector of the people. An imbalance exists between the actors, due to the resources and information control of the enterprise and government actors relative to the individual and the public. Failure to use effective preventive interventions is perhaps the best example of the misalignment of incentives. We consider the current Pareto efficient balance between the actors in relation to the Pareto frontier, and show that a significant change in the healthcare market requires major changes in the utilities of the enterprise and government actors.</p> <p>Summary</p> <p>A variety of actions are necessary for maximizing population health within the constraints of available resources and the current balance between the actors. These actions include improved transparency of all aspects of medical decision making, greater involvement of patients in shared medical decision making, greater oversight of guideline development and coverage decisions, limitations on direct to consumer advertising, and the need for an enhanced role of the government as the public advocate.</p
    corecore