6 research outputs found

    Fabrication of a high wear resistance AA7075/AL2O3 composites via liquid metallurgy process

    No full text
    In the present study, AA7075/Al2O3 composites have been fabricated via liquid metallurgy process. AA7075 alloy and Al2O3 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 3 and 6 wt. % of Al2O3 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc. The results showed that the wear rate of the AA/Al2O3 composites was smaller than that of the monolithic AA7075 samples. Finally, the worn surfaces of samples were investigated by SEM

    Bonding evolution of composites fabricated via electrically assisted press bonding

    No full text
    Reducing fuel consumption and increasing efficiency is one of the solutions that humanity has adopted to reduce costs caused by fuel consumption in all industries, including the transportation industry. An effective solution to improve practical fuel consumption is to reduce weight. In principle, press bonding (PB), which is done using a press and is a solid-state welding process, can create a bond between parts with different materials and produce materials with lighter weight and more strength. But it should also be noted that the plasticity of some materials is very low, and these materials are incapable of machinability. Electrical assistance is a potential solution that can solve this problem by increasing the flow tension and reducing the forming force. In this study, aluminum alloy 1060 bars were electrically press bonded at electricity current levels 0 Å up to 300 Å. The effect of pressing parameters on the bonding strength, such as amount of electricity current level and plastic strain, was investigated using a peeling test. Results show that more adhesive among the layers (bonding strength) was attained by growing current and reducing thickness. Scanning electron microscope (SEM) was investigated the peeling surface of samples versus the different thickness reduction ratios and electric currents. The Joule heating effect in the electrically-assisted in press bonding (EAPB) process decreases the forming strength of bars and increases the bond strength of bonded bars by about three times. Using SEM, the peeling surface of samples and the fracture surface around the interface after the tensile test were studied to investigate the bonding quality

    Tribological characterization of laminated hybrid AA1050/TiC/Graphite composite bars

    No full text
    Hybrid composites (HC) refer to a type of material that combines aluminum (Al), titanium carbide (TiC), and graphite (Gr) at the nano level. These HC have shown promise in applications requiring high strength, wear resistance (WR), and tribological performance, such as automotive, aerospace, and industrial sectors. In this study, these HC are made using a combination of Powder metallurgy (PM) and accumulative press bonding (APB) processes have been developed. This is the first time that the wear resistance of a hybrid metal matrix composite fabricated with Gr as a solid lubricant has been done and thid is the novelty of this study. In fact, the presence of TiC nanoparticles (NP) provides improved mechanical properties, such as hardness (Hr), strength, and WR for HC. On the other hand, Gr acts as a solid nano-lubricant (NLU) in HC, reducing friction and WR during sliding contact. The presence of Gr-NP also helps to form a durable Gr-nanolayer on tribo surfaces and further improves the WR of HC. This study used a scanning electron microscope (SEM). The results demonstrated that incorporating TiC- NP reduced the WR rate and promoted NL development at extended sliding distances, creating a durable TiC/Gr HC on the TS. Finally, the improved WR of Al/TiC/Gr-HC can be attributed to the stability of the Gr-NL on the TS
    corecore