10,013 research outputs found

    Mass-ratio distribution of extremely low-mass white dwarf binaries

    Full text link
    Knowing the masses of the components of binary systems is very useful to constrain the possible scenarios that could lead to their existence. While it is sometimes possible to determine the mass of the primary star, for single-lined spectroscopic binaries it is not trivial to have good estimates of the mass of the secondary. If a large enough sample of such binaries is available, it is possible, however, to use statistical methods to determine the mass ratio distribution, and thus, the secondary mass distribution. Recently, Andrews et al. (2014) studied the mass distribution of companions to extremely low-mass white dwarfs, using a sample of binaries from the ELM WD Survey. I reanalyse the same sample, using two different methods: in the first one, I assume some functional form for the mass distribution, while in the second, I apply an inversion method. I show that the resulting companion-mass distribution can be as well approximated by either a uniform distribution or a Gaussian distribution. The mass ratio distribution derived from the inversion method, without assuming any a priori functional form, shows some additional fine-grain structure, although, given the small sample, it is difficult to claim that this structure is statistically significant. I conclude that it is not possible yet to fully constrain the distribution of the mass of the companions to extremely low-mass white dwarfs, although it appears that the probability to have a neutron star in one of the systems is indeed very small.Comment: A&A Letters, in pres

    Measurements of the top-antitop production cross section at the Tevatron Run II CDF experiment using b-tagging

    Full text link
    We present measurements of the top-antitop production cross section in b-tagged lepton + jets events from proton-antiproton collisions at 1.96 TeV using the CDF detector at Fermilab. B-jets are tagged with either a secondary vertex algorithm, or a soft lepton tagger that identifies muons from B hadron semileptonic decays. With Tevatron Run II data, we estimate the top-antitop signal fraction in two different ways: by estimating the various background contributions, and by fitting directly the leading jet transverse energy spectrum for the signal and background contributions. A subset of the sample with two secondary vertex tagged jets yields a production cross section consistent with the inclusive measurements. Results are consistent with a Standard Model top-antitop signal and current measurements of the top quark mass.Comment: 3 pages, 4 figures, DPF 2004 proceedin

    Parallax and masses of alpha Centauri revisited

    Full text link
    Context. Despite the thorough work of van Leeuwen (2007), the parallax of alpha Centauri is still far from being carved in stone. Any derivation of the individual masses is therefore uncertain, if not questionable. And yet, that does not prevent this system from being used for calibration purpose in several studies. Aims. Obtaining more accurate model-free parallax and individual masses of this system. Methods. With HARPS, the radial velocities are not only precise but also accurate. Ten years of HARPS data are enough to derive the complement of the visual orbit for a full 3D orbit of alpha Cen. Results. We locate alpha Cen (743 mas) right where Hipparcos (ESA 1997) had put it, i.e. slightly further away than derived by Soderhjelm (1999). The components are thus a bit more massive than previously thought (1.13 and 0.97 Msun for A and B respectively). These values are now in excellent agreement with the latest asteroseismologic results.Comment: 4 pages, 3 figures, accepted in Astronomy & Astrophysic
    • …
    corecore