27 research outputs found

    Active flow control by means of synthetic jets on a highly loaded compressor cascade

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This article presents the potential of active flow control to increase the aerodynamic performance of highly loaded turbomachinery compressor blades. Experimental investigations on a large-scale compressor cascade equipped with 30 synthetic jet actuators mounted to the sidewalls and the blades themselves have been carried out. Results for a variation of the inflow angle, the jet amplitude, and the actuation frequency are presented. The wake measurements show total pressure loss reductions of nearly 10 per cent for the synthetic jet actuation. An efficiency calculation reveals that the energy saved by actuation is nearly twice the energy consumption of the synthetic jets

    Experimental and numerical results of active flow control on a highly loaded stator cascade

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This article presents experimental and numerical results for a compressor cascade with active flow control. Steady and pulsed blowing has been used to control the secondary flow and separation characteristics of a highly loaded controlled diffusion airfoil. Investigations were performed at the design incidence for blowing ratios from approximately 0.7 to 3.0 (jet-to-inlet velocity) and a Reynolds number of 840 000 (based on axial chord and inlet velocity). Detailed flow field data were collected using a five-hole pressure probe, pressure taps on the blade surfaces, and time-resolved Particle Image Velocimetry. Unsteady Reynolds-averaged Navier–Stokes simulations were performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. The benefit of the flow control on the cascade performance is weighted against the costs of the actuation by introducing an efficiency which takes the presence of the jets into account.DFG, SFB 557, Beeinflussung komplexer turbulenter Scherströmunge

    A New Linear High Speed Compressor Stator Cascade for Active Flow Control Investigations

    No full text

    Influence of the Actuator Jet Angle on the Reattachment Process with Pulsed Excitation

    No full text

    Recruitment of histone methyltransferase Ehmt1 to Foxp3 TSDR counteracts differentiation of induced regulatory T cells

    No full text
    Differentiation towards CD4 + regulatory T (Treg) cells is essentially dependent on an epigenetic program at Treg signature genes, which involves remodeling of the Treg-specific demethylated regions (TSDRs). In particular, the epigenetic status of the conserved non-coding sequence 2 of Foxp3 (Foxp3 TSDR) determines expression stability of the master transcription factor and thus, Treg lineage identity. However, the molecular mechanisms controlling the epigenetic remodeling at TSDRs in Treg and conventional T (Tcon) cells are largely unknown. Using a combined approach of DNA pull-down and mass spectrometric analysis, we report a novel regulatory mechanism in which transcription factor Wiz recruits the histone methyltransferase Ehmt1 to Foxp3 TSDR. We show that both Wiz and Ehmt1 are crucial for shaping the region with the repressive histone modification H3K9me2 in conventional T cells. Consistently, knocking out either Ehmt1 or Wiz by CRISPR/Cas resulted in the loss of H3K9me2 and enhanced Foxp3 expression during iTreg differentiation. Moreover, the essential role of the Wiz–Ehmt1 interaction as observed at several TSDRs indicates a global function of Ehmt1 in the Treg differentiation program. Using a combined approach of DNA pull-down and mass spectrometric analysis, we report a novel regulatory mechanism in which transcription factor Wiz recruits the histone methyltransferase Ehmt1 to Foxp3 TSDR. We show that both, Wiz and Ehmt1 are crucial for shaping the region with the repressive histone modification H3K9me2 in Tcon cells. Consistently, knocking out either Ehmt1 or Wiz by CRISPR/Cas resulted in the loss of H3K9me2 and enhanced Foxp3 expression during iTreg differentiation. Moreover, the essential role of the Wiz-Ehmt1 interaction as observed at several TSDRs indicates a global function of Ehmt1 in the Treg differentiation program
    corecore