13 research outputs found

    Model Development of Afterschool Programs in Cyberspace for Third grade Students of Guidance School

    Get PDF
    This research studies the design of a model of afterschool programs in cyberspace for third grade students of guidance school in 2012-2013 school year in Tehran City. For this purpose, the main parameters of the model were identified and their interrelations were studied, in order to identify the determining needs and major parameters of afterschool programs in cyberspace. A researcher-made questionnaire has been used for the students and a semi-structured interview for the principals, teachers and other educational staff. The data collected from the questionnaires and the interviews were processed and analyzed by SPSS and AMOS. Thus the conceptual model "after school programs in cyberspace " was confirmed. According to the needs analysis that was performed, the parameters of the after school programs in cyberspace were divided into two exogenous parameters of knowledge and skill and seven endogenous parameters of individual-social features, gaining knowledge extracurricular use, accessibility to information and sources, leisure, place of after school programs, and network features. Finally, the results indicated that the two parameters of individual –social features and place of after school programs in having the most direct and indirect effects on the model of after school programs in cyberspace. Further, in addition to identifying the major parameters of afterschool programs and studying the amount of effects of each of them. The causes and necessity of such programs were studied according to the qualitative and quantitative results

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Selected AI optimization techniques and applications in geotechnical engineering

    Full text link
    AbstractIn an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don’t impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don’t meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Full text link
    International audienceAbstract Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29–39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
    corecore