449 research outputs found

    Beyond Geometry : Towards Fully Realistic Wireless Models

    Full text link
    Signal-strength models of wireless communications capture the gradual fading of signals and the additivity of interference. As such, they are closer to reality than other models. However, nearly all theoretic work in the SINR model depends on the assumption of smooth geometric decay, one that is true in free space but is far off in actual environments. The challenge is to model realistic environments, including walls, obstacles, reflections and anisotropic antennas, without making the models algorithmically impractical or analytically intractable. We present a simple solution that allows the modeling of arbitrary static situations by moving from geometry to arbitrary decay spaces. The complexity of a setting is captured by a metricity parameter Z that indicates how far the decay space is from satisfying the triangular inequality. All results that hold in the SINR model in general metrics carry over to decay spaces, with the resulting time complexity and approximation depending on Z in the same way that the original results depends on the path loss term alpha. For distributed algorithms, that to date have appeared to necessarily depend on the planarity, we indicate how they can be adapted to arbitrary decay spaces. Finally, we explore the dependence on Z in the approximability of core problems. In particular, we observe that the capacity maximization problem has exponential upper and lower bounds in terms of Z in general decay spaces. In Euclidean metrics and related growth-bounded decay spaces, the performance depends on the exact metricity definition, with a polynomial upper bound in terms of Z, but an exponential lower bound in terms of a variant parameter phi. On the plane, the upper bound result actually yields the first approximation of a capacity-type SINR problem that is subexponential in alpha

    Semi-Transitive Orientations and Word-Representable Graphs

    Get PDF
    A graph G=(V,E)G=(V,E) is a \emph{word-representable graph} if there exists a word WW over the alphabet VV such that letters xx and yy alternate in WW if and only if (x,y)E(x,y)\in E for each xyx\neq y. In this paper we give an effective characterization of word-representable graphs in terms of orientations. Namely, we show that a graph is word-representable if and only if it admits a \emph{semi-transitive orientation} defined in the paper. This allows us to prove a number of results about word-representable graphs, in particular showing that the recognition problem is in NP, and that word-representable graphs include all 3-colorable graphs. We also explore bounds on the size of the word representing the graph. The representation number of GG is the minimum kk such that GG is a representable by a word, where each letter occurs kk times; such a kk exists for any word-representable graph. We show that the representation number of a word-representable graph on nn vertices is at most 2n2n, while there exist graphs for which it is n/2n/2.Comment: arXiv admin note: text overlap with arXiv:0810.031

    Strongly simplicial vertices of powers of trees

    Get PDF
    AbstractFor a tree T and an integer k⩾1, it is well known that the kth power Tk of T is strongly chordal and hence has a strong elimination ordering of its vertices. In this note we obtain a complete characterization of strongly simplicial vertices of Tk, thereby characterizing all strong elimination orderings of the vertices of Tk

    Independent sets in bounded-degree hypergraphs

    Get PDF
    AbstractIn this paper we analyze several approaches to the Maximum Independent Set (MIS) problem in hypergraphs with degree bounded by a parameter Δ. Since independent sets in hypergraphs can be strong and weak, we denote by MIS (MSIS) the problem of finding a maximum weak (strong) independent set in hypergraphs, respectively. We propose a general technique that reduces the worst case analysis of certain algorithms on hypergraphs to their analysis on ordinary graphs. This technique allows us to show that the greedy algorithm for MIS that corresponds to the classical greedy set cover algorithm has a performance ratio of (Δ+1)/2. It also allows us to apply results on local search algorithms on graphs to obtain a (Δ+1)/2 approximation for the weighted MIS and (Δ+3)/5−ϵ approximation for the unweighted case. We improve the bound in the weighted case to ⌈(Δ+1)/3⌉ using a simple partitioning algorithm. We also consider another natural greedy algorithm for MIS that adds vertices of minimum degree and achieves only a ratio of Δ−1, significantly worse than on ordinary graphs. For MSIS, we give two variations of the basic greedy algorithm and describe a family of hypergraphs where both algorithms approach the bound of Δ

    Deterministic Digital Clustering of Wireless Ad Hoc Networks

    Full text link
    We consider deterministic distributed communication in wireless ad hoc networks of identical weak devices under the SINR model without predefined infrastructure. Most algorithmic results in this model rely on various additional features or capabilities, e.g., randomization, access to geographic coordinates, power control, carrier sensing with various precision of measurements, and/or interference cancellation. We study a pure scenario, when no such properties are available. As a general tool, we develop a deterministic distributed clustering algorithm. Our solution relies on a new type of combinatorial structures (selectors), which might be of independent interest. Using the clustering, we develop a deterministic distributed local broadcast algorithm accomplishing this task in O(ΔlogNlogN)O(\Delta \log^*N \log N) rounds, where Δ\Delta is the density of the network. To the best of our knowledge, this is the first solution in pure scenario which is only polylog(n)(n) away from the universal lower bound Ω(Δ)\Omega(\Delta), valid also for scenarios with randomization and other features. Therefore, none of these features substantially helps in performing the local broadcast task. Using clustering, we also build a deterministic global broadcast algorithm that terminates within O(D(Δ+logN)logN)O(D(\Delta + \log^* N) \log N) rounds, where DD is the diameter of the network. This result is complemented by a lower bound Ω(DΔ11/α)\Omega(D \Delta^{1-1/\alpha}), where α>2\alpha > 2 is the path-loss parameter of the environment. This lower bound shows that randomization or knowledge of own location substantially help (by a factor polynomial in Δ\Delta) in the global broadcast. Therefore, unlike in the case of local broadcast, some additional model features may help in global broadcast

    Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta
    corecore