5,685 research outputs found
Write-limited sorts and joins for persistent memory
To mitigate the impact of the widening gap between the memory needs of CPUs and what standard memory technology can deliver, system architects have introduced a new class of memory technology termed persistent memory. Persistent memory is byteaddressable, but exhibits asymmetric I/O: writes are typically one order of magnitude more expensive than reads. Byte addressability combined with I/O asymmetry render the performance profile of persistent memory unique. Thus, it becomes imperative to find new ways to seamlessly incorporate it into database systems. We do so in the context of query processing. We focus on the fundamental operations of sort and join processing. We introduce the notion of write-limited algorithms that effectively minimize the I/O cost. We give a high-level API that enables the system to dynamically optimize the workflow of the algorithms; or, alternatively, allows the developer to tune the write profile of the algorithms. We present four different techniques to incorporate persistent memory into the database processing stack in light of this API. We have implemented and extensively evaluated all our proposals. Our results show that the algorithms deliver on their promise of I/O-minimality and tunable performance. We showcase the merits and deficiencies of each implementation technique, thus taking a solid first step towards incorporating persistent memory into query processing. 1
Universality of dispersive spin-resonance mode in superconducting BaFe2As2
Spin fluctuations in superconducting BaFe2(As1-xPx)2 (x=0.34, Tc = 29.5 K)
are studied using inelastic neutron scattering. Well-defined commensurate
magnetic signals are observed at ({\pi},0), which is consistent with the
nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations
in the normal state exhibit a three-dimensional character reminiscent of the
AFM order in nondoped BaFe2As2. A clear spin gap is observed in the
superconducting phase forming a peak whose energy is significantly dispersed
along the c-axis. The bandwidth of dispersion becomes larger with approaching
the AFM ordered phase universally in all superconducting BaFe2As2, indicating
that the dispersive feature is attributed to three-dimensional AFM
correlations. The results suggest a strong relationship between the magnetism
and superconductivity.Comment: 5 pages, 5 figure
Recommended from our members
Combined Banzhaf & Diversity Index (CBDI) for critical node detection
Critical node discovery plays a vital role in assessing the vulnerability of a computer network to malicious attacks and failures and provides a useful tool with which one can greatly improve network security and reliability. In this paper, we propose a new metric to characterize the criticality of a node in an arbitrary computer network which we refer to as the Combined Banzhaf & Diversity Index (CBDI). The metric utilizes a diversity index which is based on the variability of a node׳s attributes relative to its neighbours and the Banzhaf power index which characterizes the degree of participation of a node in forming shortest paths. The Banzhaf power index is inspired from the theory of voting games in game theory. The proposed metric is evaluated using analysis and simulations. The criticality of nodes in a network is assessed based on the degradation in network performance achieved when these nodes are removed. We use several performance metrics to evaluate network performance including the algebraic connectivity which is a spectral metric characterizing the connectivity robustness of the network. Extensive simulations in a number of network topologies indicate that the proposed CBDI index chooses more critical nodes which, when removed, degrade network performance to a greater extent than if critical nodes based on other criticality metrics were removed
Recommended from our members
Spectral Partitioning for Node Criticality
Finding critical nodes in a network is a significant task, highly relevant to network vulnerability and security. We consider the node criticality problem as an algebraic connectivity minimization problem where the objective is to choose nodes which minimize the algebraic connectivity of the resulting network. Previous suboptimal solutions of the problem suffer from the computational complexity associated with the implementation of a maximization consensus algorithm. In this work, we use spectral partitioning concepts introduced by Fiedler, to propose a new suboptimal solution which significantly reduces the implementation complexity. Our approach, combined with recently proposed distributed Fiedler vector calculation algorithms enable each node to decide by itself whether it is a critical node. If a single node is required then the maximization algorithm is applied on a restricted set of nodes within the network. We derive a lower bound for the achievable algebraic connectivity when nodes are removed from the network and we show through simulations that our approach leads to algebraic connectivity values close to this lower bound. Similar behaviour is exhibited by other approaches at the expense, however, of a higher implementation complexity
Stillbirth should be given greater priority on the global health agenda
Stillbirths are largely excluded from international measures of mortality and morbidity. Zeshan Qureshi and colleagues argue that stillbirth should be higher on the global health agenda
The fodder grass resources for ruminants: A indigenous treasure of local communities of Thal desert Punjab, Pakistan
Indigenous people have been using local grasses for rearing their animals for centuries. The present study is the first record of traditional knowledge of grasses and livestock feeding system from the Thal desert in Pakistan. A snowball sampling method was used to identify key participants. Information was collected from the respondents from six districts of Thal Desert through semi-structural questionnaire and site visits. The data was analyzed through Smith's salience index and Composite Salience using ANTHROPAC package in R software. On the whole 61 grasses were recorded from the study area: most of them belong to the Poaceae family (52 species). Based on palatability grasses were categorized into three major groups i.e. (A) High priority, (B) Medium priority and (C) Low priority. Species in Group A, abundantly present in the study area represent a source of highly palatable forage for all ruminants. 232 (141M +91W) local participants were interviewed. Participants were grouped into three major age categories: 20-35 (48 participants), 36-50 (116 participants) and 51-67 years old (68 participants). ANTHROPAC frequency analysis confirmed the Smith's salience index and Composite Salience; Cynodon dactylon was the favorite species (6.46 SI, 0.6460 CS) followed by Cymbopogon jwarancusa (5.133 SI, 0.5133 CS) and Sorghum sp. was the third most salient species (5.121 SI, 0.5121 CS). Grasses were mostly available during the months of August and October and had also ethnoveterinary importance. This document about the traditional feeding of livestock in Thal Desert can underline the importance of conserving a traditional knowledge, which was poorly documented before
- …