54,869 research outputs found

    Differential Amplify-and-Forward Relaying in Time-Varying Rayleigh Fading Channels

    Full text link
    This paper considers the performance of differential amplify-and-forward (D-AF) relaying over time-varying Rayleigh fading channels. Using the auto-regressive time-series model to characterize the time-varying nature of the wireless channels, new weights for the maximum ratio combining (MRC) of the received signals at the destination are proposed. Expression for the pair-wise error probability (PEP) is provided and used to obtain an approximation of the total average bit error probability (BEP). The obtained BEP approximation clearly shows how the system performance depends on the auto-correlation of the direct and the cascaded channels and an irreducible error floor exists at high signal-to-noise ratio (SNR). Simulation results also demonstrate that, for fast-fading channels, the new MRC weights lead to a better performance when compared to the classical combining scheme. Our analysis is verified with simulation results in different fading scenarios

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 3⊗33\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl

    Determining White Noise Forcing From Eulerian Observations in the Navier Stokes Equation

    Get PDF
    The Bayesian approach to inverse problems is of paramount importance in quantifying uncertainty about the input to and the state of a system of interest given noisy observations. Herein we consider the forward problem of the forced 2D Navier Stokes equation. The inverse problem is inference of the forcing, and possibly the initial condition, given noisy observations of the velocity field. We place a prior on the forcing which is in the form of a spatially correlated temporally white Gaussian process, and formulate the inverse problem for the posterior distribution. Given appropriate spatial regularity conditions, we show that the solution is a continuous function of the forcing. Hence, for appropriately chosen spatial regularity in the prior, the posterior distribution on the forcing is absolutely continuous with respect to the prior and is hence well-defined. Furthermore, the posterior distribution is a continuous function of the data. We complement this theoretical result with numerical simulation of the posterior distribution
    • …
    corecore