171 research outputs found
Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus
callosum (TCC) is a common and clinically distinct form of familial spastic
paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected
families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval
and identified ten mutations in a previously unidentified gene expressed
ubiquitously in the nervous system but most prominently in the cerebellum,
cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense
or insertions and deletions leading to a frameshift, suggesting a
loss-of-function mechanism. The identification of the function of the gene will
provide insight into the mechanisms leading to the degeneration of the
corticospinal tract and other brain structures in this frequent form of ARHSP
Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635
The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203
Radiographic knee osteoarthritis in ex-elite table tennis players
<p>Abstract</p> <p>Background</p> <p>Table tennis involves adoption of the semi-flexed knee and asymmetrical torsional trunk movements creating rotational torques on the knee joint which may predispose players to osteoarthritis (OA) of the knee. This study aims to compare radiographic signs of knee OA and associated functional levels in ex-elite male table tennis players and control subjects.</p> <p>Methods</p> <p>Study participants were 22 ex-elite male table tennis players (mean age 56.64 ± 5.17 years) with 10 years of involvement at the professional level and 22 non-athletic males (mean age 55.63 ± 4.08 years) recruited from the general population. A set of three radiographs taken from each knee were evaluated by an experienced radiologist using the Kellgren and Lawrence (KL) scale (0-4) to determine radiographic levels of OA severity. The intercondylar distance was taken as a measure of lower limb angulation. Participants also completed the pain, stiffness, and physical function categories of the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) 3.1 questionnaire.</p> <p>Results</p> <p>The results showed 78.3% of the ex-elite table tennis players and 36.3% of controls had varying signs of radiographic knee OA with a significant difference in the prevalence levels of definite radiographic OA (KL scale > 2) found between the two groups (<it>P </it>≤ 0.001). Based on the WOMAC scores, 68.2% of the ex-elite table tennis players reported symptoms of knee pain compared with 27.3% of the controls (<it>p </it>= 0.02) though no significant differences were identified in the mean physical function or stiffness scores between the two groups. In terms of knee alignment, 73.7% of the ex-elite athletes and 32% of the control group had signs of altered lower limb alignment (genu varum) (<it>p </it>= 0.01). Statistical differences were found in subjects categorized as having radiographic signs of OA and altered lower limb alignment (<it>p </it>= 0.03).</p> <p>Conclusions</p> <p>Ex-elite table tennis players were found to have increased levels of radiological signs of OA in the knee joint though this did not transpire through to altered levels of physical disability or knee stiffness in these players when compared with subjects from the general population suggesting that function in these players is not severely impacted upon.</p
Alternative Splicing of Spg7, a Gene Involved in Hereditary Spastic Paraplegia, Encodes a Variant of Paraplegin Targeted to the Endoplasmic Reticulum
BACKGROUND: Hereditary spastic paraplegia defines a group of genetically heterogeneous diseases characterized by weakness and spasticity of the lower limbs owing to retrograde degeneration of corticospinal axons. One autosomal recessive form of the disease is caused by mutation in the SPG7 gene. Paraplegin, the product of SPG7, is a component of the m-AAA protease, a high molecular weight complex that resides in the mitochondrial inner membrane, and performs crucial quality control and biogenesis functions in mitochondria. PRINCIPAL FINDINGS: Here we show the existence in the mouse of a novel isoform of paraplegin, which we name paraplegin-2, encoded by alternative splicing of Spg7 through usage of an alternative first exon. Paraplegin-2 lacks the mitochondrial targeting sequence, and is identical to the mature mitochondrial protein. Remarkably, paraplegin-2 is targeted to the endoplasmic reticulum. We find that paraplegin-2 exposes the catalytic domains to the lumen of the endoplasmic reticulum. Moreover, endogenous paraplegin-2 accumulates in microsomal fractions prepared from mouse brain and retina. Finally, we show that the previously generated mouse model of Spg7-linked hereditary spastic paraplegia is an isoform-specific knock-out, in which mitochondrial paraplegin is specifically ablated, while expression of paraplegin-2 is retained. CONCLUSIONS/SIGNIFICANCE: These data suggest a possible additional role of AAA proteases outside mitochondria and open the question of their implication in neurodegeneration
- …